comparison bas11.s @ 0:605ff82c4618

Initial check in with cleaned up sources This is the initial check in the source code in a state where it builds byte accurate copies of all the various ROM versions included.
author William Astle <lost@l-w.ca>
date Sat, 08 Dec 2018 19:57:01 -0700
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:605ff82c4618
1 *pragma nolist
2 include defs.s
3 *pragma list
4 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
5 ; COLOR BASIC ROM
6 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
7 org BASIC
8 ; This is the official set of ROM entry points. It is unfortunate that the generic input ("console in") routine is not exposed
9 ; here. It is also unfortunate that no open and close file routines are exposed. This and other oversignts led to a lot of
10 ; software either having to re-invent the wheel or calling directly into the ROM instead of via these official entry points.
11 POLCAT fdb KEYIN ; indirect jump, get a keystroke
12 CHROUT fdb PUTCHR ; indirect jump, output character
13 CSRDON fdb CASON ; indirect jump, turn cassette on and start reading
14 BLKIN fdb GETBLK ; indirect jump, read a block from tape
15 BLKOUT fdb SNDBLK ; indirect jump, write a block to tape
16 JOYIN fdb GETJOY ; indirect jump, read joystick axes
17 WRTLDR fdb WRLDR ; indirect jump, turn cassette on and write a leader
18 ; Initialization code.
19 LA00E lds #LINBUF+LBUFMX+1 ; put the stack in the line input buffer which is a safe place for now
20 lda #0x37 ; enable the cartidge interrupt (to detect autostarting cartridges)
21 sta PIA1+3
22 lda RSTFLG ; get warm start flag
23 cmpa #0x55 ; is it valid?
24 bne BACDST ; brif not - cold start
25 ldx RSTVEC ; get warm start routine pointer
26 lda ,x ; get first byte of the routine
27 cmpa #0x12 ; is it NOP?
28 bne BACDST ; brif not - the routine is invalid so do a cold start
29 jmp ,x ; transfer control to the warm start routine
30 ; RESET/power on comes here
31 RESVEC leay LA00E,pcr ; point to warm start check code
32 LA02A ldx #PIA1 ; point to PIA1 - we're going to rely on the mirroring to reach PIA0
33 clr -3,x ; set PIA0 DA to direction mode
34 clr -1,x ; set PIA0 DB to direction mode
35 clr -4,x ; set PIA0 DA to inputs
36 ldd #0xff34
37 sta -2,x ; set PIA0 DB to outputs
38 stb -3,x ; set PIA0 DA to data mode
39 stb -1,x ; set PIA0 DB to data mode
40 clr 1,x ; set PIA1 DA to direction mode
41 clr 3,x ; set PIA1 DB to direction mode
42 deca
43 sta ,x ; set PIA1 DA bits 7-1 as output, 0 as input
44 lda #0xf8 ; set PIA1 DB bits 7-3 as output, 2-0 as input
45 sta 2,x
46 stb 1,x ; set PIA1 DA to data mode
47 stb 3,x ; set PIA1 DB to data mode
48 clr 2,x ; set VDG to alpha-numeric
49 ldb #2 ; make RS232 marking ("stop" bit)
50 stb ,x
51 ldu #SAMREG ; point to SAM register
52 ldb #16 ; 16 bits to clear
53 LA056 sta ,u++ ; clear a bit
54 decb ; done all?
55 bne LA056 ; brif not
56 sta SAMREG+9 ; put display at 0x400
57 tfr b,dp ; set direct page to 0
58 ldb #4 ; use as a mask to check RAMSZ input
59 sta -2,x ; set RAMSZ strobe high
60 bitb 2,x ; check RAMSZ input
61 beq LA072 ; brif set for 4K RAMs
62 clr -2,x ; set strobe low
63 bitb 2,x ; check input
64 beq LA070 ; brif set for 64K rams
65 leau -2,u ; adjust pointer to set SAM for 16K RAMs
66 LA070 sta -3,u ; program SAM for either 16K or 64K RAMs
67 LA072 jmp ,y ; transfer control to startup routine
68 ; Cold start jumps here
69 BACDST ldx #VIDRAM+1 ; point past the top of the first 1K of memory (for double predec below)
70 LA077 clr ,--x ; clear a byte (last will actually try clearing LSB of RESET vector in ROM)
71 leax 1,x ; move forward one byte (will set Z if we're done)
72 bne LA077 ; brif not donw yet
73 jsr LA928 ; clear the screen
74 clr ,x+ ; put the constant zero that lives before the program
75 stx TXTTAB ; set beginning of program storage
76 LA084 lda 2,x ; get value from memory
77 coma ; make it different
78 sta 2,x ; try putting different into memory
79 cmpa 2,x ; did it matcH?
80 bne LA093 ; brif not - we found the end of memory
81 leax 1,x ; move pointer forward
82 com 1,x ; restore the original memory contents
83 bra LA084 ; try another byte
84 LA093 stx TOPRAM ; save top of memory (one below actual top because we need a byte for VAL() to work)
85 stx MEMSIZ ; save top of string space
86 stx STRTAB ; set bottom of allocated string space
87 leax -200,x ; allocate 200 bytes of string space
88 stx FRETOP ; set top of actually free memory
89 tfr x,s ; put the stack there
90 ldx #LA10D ; point to variable initializer
91 ldu #CMPMID ; point to variables to initialize (first batch)
92 ldb #28 ; 28 bytes in first batch
93 jsr LA59A ; copy bytes to variables
94 ldu #IRQVEC ; point to variables to initialize (second batch)
95 ldb #30 ; 30 bytes this time
96 jsr LA59A ; copy bytes to variables
97 ldx -12,x ; get SN error address
98 stx 3,u ; set ECB's command handlers to error
99 stx 8,u
100 ldx #RVEC0 ; point to RAM vectors
101 ldd #0x394b ; write 75 RTS opcodes (25 RAM vectors)
102 LA0C0 sta ,x+ ; put an RTS
103 decb ; done?
104 bne LA0C0 ; brif not
105 sta LINHDR-1 ; make temporary line header data for line encoding have a nonzero next line pointer
106 jsr LAD19 ; do a "NEW"
107 ldx #'E*256+'X ; magic number to detect ECB ROM
108 cmpx EXBAS ; is there an ECB ROM?
109 lbeq EXBAS+2 ; brif so - launch it
110 andcc #0xaf ; start interrupts
111 ldx #LA147-1 ; point to sign on message
112 jsr LB99C ; print it out
113 ldx #BAWMST ; warm start routine address
114 stx RSTVEC ; set vector there
115 lda #0x55 ; warm start valid flag
116 sta RSTFLG ; mark warm start valid
117 bra LA0F3 ; go to direct mode
118 ; Warm start entry point
119 BAWMST nop ; valid routine marker
120 clr DEVNUM ; reset output/input to screen
121 jsr LAD33 ; do a partial NEW
122 andcc #0xaf ; start interrupts
123 jsr LA928 ; clear the screen
124 LA0F3 jmp LAC73 ; go to direct mode
125 ; FIRQ service routine - this handles starting autostart cartridges
126 BFRQSV tst PIA1+3 ; is it the cartridge interrupt?
127 bmi LA0FC ; brif so
128 rti
129 LA0FC jsr LA7D1 ; delay for a while
130 jsr LA7D1 ; delay for another while
131 leay <LA108,pcr ; point to cartridge starter
132 jmp LA02A ; go initialize everything clean for the cartridge
133 LA108 clr RSTFLG ; force a cold start a cartridge reset
134 jmp ROMPAK ; transfer control to the cartridge
135 ; Variable initializers (first batch)
136 LA10D fcb 18 ; mid band partition of the 1200/2400 Hz period
137 fcb 24 ; upper limit of 1200 Hz period
138 fcb 10 ; upper limit of 2400 Hz period
139 fdb 128 ; number of 0x55s for cassette leader
140 fcb 11 ; cursor blink delay
141 fdb 87 ; 600 baud delay constant
142 fdb 1 ; printer carriage return delay constant
143 fcb 16 ; printer tab field width
144 fcb 112 ; last printer tab zone
145 fcb 132 ; printer carriage width
146 fcb 0 ; printer carriage position
147 fdb LB44A ; default execution address for EXEC
148 inc CHARAD+1 ;* character fetching routines (DP portion) - we first do a two
149 bne LA123 ;* two stage increment of CHARAD then load the value into A
150 inc CHARAD ;* before transferring control to the bottom half routine in ROM
151 LA123 lda >0 ; NOTE: the 0 is a placeholder, extended addressing is required
152 jmp BROMHK
153 ; Variable initializers (second batch)
154 jmp BIRQSV ; IRQ handler
155 jmp BFRQSV ; FIRQ handler
156 jmp LB44A ; default USR() address
157 fcb 0x80,0x4f,0xc7,0x52,0x59 ; random seed
158 fcb 0xff ; capslock flag - default to upper case
159 fdb DEBDEL ; keyboard debounce delay (why is it a variable?)
160 jmp LB277 ; exponentiation handler vector
161 fcb 53 ; (command interpretation table) 53 commands
162 fdb LAA66 ; (command interpretation table) reserved words list (commands)
163 fdb LAB67 ; (command interpretation table) jump table (commands)
164 fcb 20 ; (command interpretation table) 20 functions
165 fdb LAB1A ; (command interpretation table) reserved words list (functions)
166 fdb LAA29 ; (command interpretation table) jump table (functions)
167 ; This is the signon message.
168 LA147 fcc 'COLOR BASIC 1.1'
169 fcb 0x0d
170 fcc '(C) 1980 TANDY'
171 fcb 0
172 ; This is the "invalid colour" CLS easter egg text. Basically 11 wasted bytes
173 LA166 fcc 'MICROSOFT'
174 fcb 0x0d,0
175 ; Read a character from current device and mask off bit 7 (keep it as 7 bit ASCII)
176 LA171 bsr LA176 ; get character
177 anda #0x7f ; mask off high bit
178 rts
179 ; Generic read routine. Reads a character from the device specified by DEVNUM. If no input was available,
180 ; CINBFL will bet nonzero (on EOF). If input was available, CINBFL will be zero. Note that this routine
181 ; has undefined results when called on an output only device. All registers except CC and A are preserved.
182 LA176 jsr RVEC4 ; do RAM hook
183 clr CINBFL ; flag data available
184 tst DEVNUM ; is it keyboard?
185 beq LA1B1 ; brif so - blink cursor and wait for key press
186 tst CINCTR ; is there anything in cassette input buffer?
187 bne LA186 ; brif so
188 com CINBFL ; flag EOF
189 rts
190 ; Read character from cassette file
191 LA186 pshs u,y,x,b ; preserve registers
192 ldx CINPTR ; get input buffer pointer
193 lda ,x+ ; get character from buffer
194 pshs a ; save it for return
195 stx CINPTR ; save new input buffer pointer
196 dec CINCTR ; count character just consumed
197 bne LA197 ; brif buffer is not empty yet
198 jsr LA635 ; go read another block, if any, to refill the buffer
199 LA197 puls a,b,x,y,u,pc ; restore registers and return the character
200 ; Blink the cursor. This might be better timed via an interrupt or something.
201 LA199 dec BLKCNT ; is it time to blink the cursor?
202 bne LA1AB ; brif not
203 ldb #11 ; reset blink timer
204 stb BLKCNT
205 ldx CURPOS ; get cursor position
206 lda ,x ; get character at the cursor
207 adda #0x10 ; move to next color
208 ora #0x8f ; make sure it's a grahpics block with all elements lit
209 sta ,x ; put new cursor block on screen
210 LA1AB ldx #DEBDEL ; we'll use the debounce delay for the cursor blink timer (10ms)
211 LA1AE jmp LA7D3 ; go count X down
212 ; Blink cursor while waiting for a key press
213 LA1B1 pshs x,b ; save registers
214 LA1B3 bsr LA199 ; go do a cursor iteration
215 bsr KEYIN ; go read a key
216 beq LA1B3 ; brif no key pressed
217 ldb #0x60 ; VDG screen space character
218 stb [CURPOS] ; blank cursor out
219 LA1BF puls b,x,pc ; restore registers and return
220 ; This is the actual keyboard polling routine. Returns 0 if no new key is down. Updated compared to 1.0 to reject
221 ; joystick buttons.
222 KEYIN pshs u,x,b ; save registers
223 bsr LA1C8 ; get keystroke
224 tsta ; set flags
225 puls b,x,u,pc ; restore registers and return
226 LA1C8 ldu #PIA0 ; point to keyboard PIA
227 ldx #KEYBUF ; point to state table
228 clra ; clear carry and set column strobe and counter to 0xff
229 deca
230 pshs x,a ; save colomn counter and a couple of holes for temporaries
231 sta 2,u ; initialize the column strobe to no columns active
232 skip1
233 LA1D5 comb ; set carry flag
234 rol 2,u ; move to nextcolumn
235 bcc LA1BF ; brif we've done the last one
236 inc 0,s ; bump column count
237 bsr LA239 ; read keyboard row data
238 sta 1,s ; save key data
239 eora ,x ; set any bit where a key state changed
240 anda ,x ; ignore any where a key was released
241 ldb 1,s ; get new key data
242 stb ,x+ ; save in state table
243 tsta ; was a key down?
244 beq LA1D5 ; brif not - check another
245 ldb 2,u ; get column strobe data
246 stb 2,s ; save it for later
247 ldb #0xf8 ; make sure B is 0 after first ADDB
248 LA1F1 addb #8 ; adjust to next row
249 lsra ; are we at the right row base?
250 bcc LA1F1 ; brif not
251 addb 0,s ; add in column number
252 beq LA244 ; brif it was @
253 cmpb #26 ; letter?
254 bhi LA246 ; brif not
255 orb #0x40 ; add in upper case ASCII bias
256 bsr LA22E ; check for shift key
257 beq LA20B ; brif shift down
258 lda CASFLG ; check casplock
259 bne LA20B ; brif not caps mode
260 orb #0x20 ; convert to lower case
261 LA20B stb 0,s ; temp store ASCII value
262 ldx DEBVAL ; get debounce dely counter
263 jsr LA7D3 ; wait while we count X down
264 ldb #0xff ; set column strobe to no columns
265 bsr LA237 ; read keyboard data
266 inca ; do we have anything reading?
267 bne LA220 ; brif so - reject keyboard read
268 LA21A ldb 2,s ; get saved column strobe
269 bsr LA237 ; read the keyboard data
270 cmpa 1,s ; does it match the result before the delay?
271 LA220 puls a ; get back return value
272 bne LA22B ; brif we have a non-match or joystick button
273 cmpa #0x12 ; SHIFT-0?
274 bne LA22C ; brif not
275 com CASFLG ; swap capslock state
276 LA22B clra ; set Z and return zero for no key down
277 LA22C puls x,pc ; restore registers and return
278 LA22E lda #0x7f ; column strobe for SHIFT
279 sta 2,u ; strobe keyboard
280 lda ,u ; get row data
281 anda #0x40 ; only keep shift state
282 rts
283 LA237 stb 2,u ; save requested column strobe
284 LA239 lda ,u ; read row data
285 ora #0x80 ; mask joystick comparator input
286 tst 2,u ; are we reading column 7?
287 bmi LA243 ; brif not
288 ora #0xc0 ; also mask off the SHIFT key
289 LA243 rts
290 LA244 ldb #51 ; scan code for @
291 LA246 ldx #CONTAB-0x36 ; point to first batch in control code list
292 cmpb #33 ; arrows, space, zero?
293 blo LA263 ; brif so
294 ldx #CONTAB-0x54 ; point to second batch in control code list
295 cmpb #48 ; ENTER, CLEAR, BREAK, @?
296 bhs LA263 ; brif so
297 bsr LA22E ; get shift status
298 cmpb #43 ; number, colon, semicolon?
299 bls LA25C ; brif so
300 eora #0x40 ; invert shift sense if so
301 LA25C tsta ; test shift status
302 beq LA20B ; brif shift down - we have the code so check for debounce
303 addb #0x10 ; add in ASCII offset
304 bra LA20B ; check for debounce
305 LA263 aslb ; two entries for table entry
306 bsr LA22E ; get shift status
307 bne LA269 ; brif not down
308 incb ; move to shifted code entry
309 LA269 ldb b,x ; get ASCII code
310 bra LA20B ; go check for debounce
311 fcb 0 ; unused in Color Basic 1.0
312 CONTAB fcb 0x5e,0x5f ; <UP> (^, _)
313 fcb 0x0a,0x5b ; <DOWN> (LF, [)
314 fcb 0x08,0x15 ; <LEFT> (BS, ^U)
315 fcb 0x09,0x5d ; <RIGHT> (TAB, ])
316 fcb 0x20,0x20 ; <SPACE>
317 fcb 0x30,0x12 ; <0> (0, ^R)
318 fcb 0x0d,0x0d ; <ENTER> (CR, CR)
319 fcb 0x0c,0x5c ; <CLEAR> (FF, \)
320 fcb 0x03,0x03 ; <BREAK> (^C, ^C)
321 fcb 0x40,0x13 ; <@> (@, ^S)
322 ; Generic output routine.
323 ; Output character in A to the device specified by DEVNUM. All registers are preserved except CC.
324 ; Sending output to a device that does not support output is undefined.
325 PUTCHR jsr RVEC3 ; call RAM hook
326 pshs b ; save B
327 ldb DEVNUM ; get desired device number
328 incb ; set flags (Z for -1, etc.)
329 puls b ; restore B
330 bmi LA2BF ; brif < -1 (line printer)
331 bne LA30A ; brif > -1 (screen)
332 ; Write character to tape file
333 pshs x,b,a ; save registers
334 ldb FILSTA ; get file status
335 decb ; input file?
336 beq LA2A6 ; brif so
337 ldb CINCTR ; get character count
338 incb ; account for this character
339 bne LA29E ; brif buffer not full
340 bsr LA2A8 ; write previously full block to tape
341 LA29E ldx CINPTR ; get output buffer pointer
342 sta ,x+ ; put character in output
343 stx CINPTR ; save new buffer pointer
344 inc CINCTR ; account for this character
345 LA2A6 puls a,b,x,pc ; restore registers and return
346 ; Write a block of data to tape.
347 LA2A8 ldb #1 ; data block type
348 LA2AA stb BLKTYP ; set block type
349 ldx #CASBUF ; point to output buffer
350 stx CBUFAD ; set buffer pointer
351 ldb CINCTR ; get number of bytes in the block
352 stb BLKLEN ; set length to write
353 pshs u,y,a ; save registers
354 jsr LA7E5 ; write a block to tape
355 puls a,y,u ; restore registers
356 jmp LA650 ; reset buffer pointers
357 LA2BF pshs x,b,a,cc ; save registers and interrupt status
358 orcc #0x50 ; disable interrupts
359 bsr LA2FB ; set output to marking
360 clrb ; transmit a start bit
361 bsr LA2FD
362 ldb #8 ; send 8 bits
363 LA2CA pshs b ; save bit counter
364 clrb ; set output to
365 lsra ; get output bit to C
366 rolb ; get it to the correct bit position for output
367 aslb
368 bsr LA2FD ; send the bit
369 puls b ; get back bit counter
370 decb ; sent all 8 bits?
371 bne LA2CA ; brif not
372 bsr LA2FB ; send stop bit (B is 0)
373 puls cc,a ; restore interrupts and output character
374 cmpa #0x0d ; carriage return?
375 beq LA2E7 ; brif so
376 inc LPTPOS ; bump printer position
377 ldb LPTPOS ; get current printer position
378 cmpb LPTWID ; end of line?
379 blo LA2ED ; brif not
380 LA2E7 clr LPTPOS ; reset to start of line
381 bsr LA305 ; delay for carriage return
382 bsr LA305
383 LA2ED ldb PIA1+2 ; get rs232 status
384 lsrb ; is it "read"?
385 bcs LA2ED ; brif not
386 puls b,x,pc ; restore registers and return
387 fdb 0,0,0 ; unused space
388 LA2FB ldb #2 ; set output to high (marking)
389 LA2FD stb PIA1 ; set RS232 output
390 bsr LA302 ; do baud delay (first iteration) then fall through for second
391 LA302 ldx LPTBTD ; get buard rate delay constant
392 skip2
393 LA305 ldx LPTLND ; get carriage return delay constant
394 jmp LA7D3 ; count X down
395 ; Output character to screen
396 LA30A pshs x,b,a ; save registers
397 ldx CURPOS ; get cursor pointer
398 cmpa #0x08 ; backspace?
399 bne LA31D ; brif not
400 cmpx #VIDRAM ; at top of screen?
401 beq LA35D ; brif so - it's a no-op
402 lda #0x60 ; VDG space character
403 sta ,-x ; put a space at previous location and move pointer back
404 bra LA344 ; save new cursor position and return
405 LA31D cmpa #0x0d ; carriage return?
406 bne LA32F ; brif not
407 ldx CURPOS ; get cursor pointer (why? we already have it)
408 LA323 lda #0x60 ; VDG space character
409 sta ,x+ ; put output space
410 tfr x,d ; see if we at a multiple of 32 now
411 bitb #0x1f
412 bne LA323 ; brif not
413 bra LA344 ; go check for scrolling
414 LA32F cmpa #0x20 ; control character?
415 blo LA35D ; brif so
416 tsta ; is it graphics block?
417 bmi LA342 ; brif so
418 cmpa #0x40 ; number or special?
419 blo LA340 ; brif so (flip "case" bit)
420 cmpa #0x60 ; upper case alpha?
421 blo LA342 ; brif so - keep it unmodified
422 anda #0xdf ; clear bit 5 (inverse video)
423 LA340 eora #0x40 ; flip inverse video bit
424 LA342 sta ,x+ ; output character
425 LA344 stx CURPOS ; save new cursor position
426 cmpx #VIDRAM+511 ; end of screen?
427 bls LA35D ; brif not
428 ldx #VIDRAM ; point to start of screen
429 LA34E ldd 32,x ; get two characters from next row
430 std ,x++ ; put them on this row
431 cmpx #VIDRAM+0x1e0 ; at start of last row on screen?
432 blo LA34E ; brif not
433 ldb #0x60 ; VDG space
434 jsr LA92D ; blank out last line (borrow CLS's loop)
435 LA35D puls a,b,x,pc ; restore registers and return
436 ; Set up device parameters for output
437 LA35F jsr RVEC2 ; do the RAM hook dance
438 pshs x,b,a ; save registers
439 clr PRTDEV ; flag device as a screen
440 lda DEVNUM ; get devicenumber
441 beq LA373 ; brif screen
442 inca ; is it tape?
443 beq LA384 ; brif so
444 ldx LPTCFW ; get tab width and last tab stop for printer
445 ldd LPTWID ; get line width and current position for printer
446 bra LA37C ; set parameters
447 LA373 ldb CURPOS+1 ; get LSB of cursor position
448 andb #0x1f ; now we have the offset into the line
449 ldx #0x1010 ; 16 character tab, position 16 is last tab stop
450 lda #32 ; screen is 32 characters wide
451 LA37C stx DEVCFW ; save tab width and last tab stop for active device
452 stb DEVPOS ; save line position for current device
453 sta DEVWID ; save line width for current device
454 puls a,b,x,pc ; restore registers and return
455 LA384 com PRTDEV ; flag device as non-display
456 ldx #0x0100 ; tab width is 1, last tab field is 0
457 clra ; line width is 0
458 clrb ; character position on line is 0
459 bra LA37C ; go set parameters
460 ; This is the line input routine used for reading lines for Basic, both in immediate mode and for
461 ; INPUT and LINE INPUT. Exit with C set if terminated by BREAK and C clear if terminated by ENTER.
462 ; The actualy entry point is LA390. Note that this routine echoes to *all* devices.
463 LA38D jsr LA928 ; clear screen (CLEAR key handling)
464 LA390 jsr RVEC12 ; do the RAM hook dance
465 clr IKEYIM ; reset cached input character from BREAK check
466 ldx #LINBUF+1 ; point to line input buffer (input pointer)
467 ldb #1 ; Number of characters in line (we start at 1 so BS handling is easier)
468 LA39A jsr LA171 ; get an input character, only keep low 7 bits
469 tst CINBFL ; is it EOF?
470 bne LA3CC ; brif EOF
471 tst DEVNUM ; is it keyboard input?
472 bne LA3C8 ; brif not - don't do line editing
473 cmpa #0x0c ; form feed (CLEAR)?
474 beq LA38D ; brif so - clear screen and reset
475 cmpa #0x08 ; backspace?
476 bne LA3B4 ; brif not
477 decb ; move back one character
478 beq LA390 ; brif we were at the start of the line - reset and start again
479 leax -1,x ; move input pointer back
480 bra LA3E8 ; echo the backspace and continue
481 LA3B4 cmpa #0x15 ; SHIFT-LEFT (kill line)?
482 bne LA3C2 ; brif not
483 LA3B8 decb ; at start of line?
484 beq LA390 ; brif so - reset and restart
485 lda #0x08 ; echo a backspace
486 jsr PUTCHR
487 bra LA3B8 ; see if we've erased everything yet
488 LA3C2 cmpa #0x03 ; BREAK?
489 orcc #1 ; set C if it is (only need Z for the next test
490 beq LA3CD ; brif BREAK - exit
491 LA3C8 cmpa #0x0d ; ENTER (CR)
492 bne LA3D9 ; brif not
493 LA3CC clra ; clear carry (it might not be clear on EOF)
494 LA3CD pshs cc ; save ENTER/BREAK flag
495 jsr LB958 ; echo a carriage return
496 clr ,x ; make sure we have a NUL at the end of the buffer
497 ldx #LINBUF ; point to input buffer
498 puls cc,pc ; restore ENTER/BREAK flag and return
499 LA3D9 cmpa #0x20 ; control character?
500 blo LA39A ; brif so - skip it
501 cmpa #'z+1 ; above z?
502 bhs LA39A ; brif so - ignore it
503 cmpb #LBUFMX ; is the buffer full?
504 bhs LA39A ; brif so - ignore extra characters
505 sta ,x+ ; put character in the buffer
506 incb ; bump character count
507 LA3E8 jsr PUTCHR ; echo character
508 bra LA39A ; go handle next input character
509 ; Check if DEVNUM Is valid for reading. Raise FM error if open but not for reading. NO error if not open.
510 LA3ED jsr RVEC5 ; do the RAM hook dance
511 lda DEVNUM ; get device number
512 beq LA415 ; brif keyboard - always valid
513 inca ; is it tape?
514 bne LA403 ; brif not
515 lda FILSTA ; get tape file status
516 bne LA400 ; brif file is open
517 LA3FB ldb #22*2 ; raise NO error
518 jmp LAC46
519 LA400 deca ; is it in input mode?
520 beq LA415 ; brif so
521 LA403 jmp LA616 ; raise FM error
522 ; Check if DEVNUM is valid for writing. Raise FM error if open but not for writing. NO error if not open.
523 LA406 jsr RVEC6 ; do the RAM hook dance
524 lda DEVNUM ; get device number
525 inca ; is it tape?
526 bne LA415 ; brif not
527 lda FILSTA ; get file status
528 beq LA3FB ; brif not open
529 deca ; is it open for reading?
530 beq LA403 ; brif so - bad mode
531 LA415 rts
532 ; CLOSE command
533 CLOSE beq LA426 ; brif no file specified - close all files
534 jsr LA5A5 ; parse device number
535 LA41B bsr LA42D ; close specified file
536 jsr GETCCH ; is there more?
537 beq LA44B ; brif not
538 jsr LA5A2 ; check for comma and parse another device number
539 bra LA41B ; go close this one
540 ; Close all files handler.
541 LA426 jsr RVEC7 ; Yup. The RAM hook dance.
542 lda #-1 ; start with tape file
543 sta DEVNUM
544 ; Close file specified in DEVNUM. Note that this never fails.
545 LA42D jsr RVEC8 ; You know it. RAM hook.
546 lda DEVNUM ; get device we're closing
547 clr DEVNUM ; reset to screen/keyboard
548 inca ; is it tape?
549 bne LA44B ; brif not
550 lda FILSTA ; get file status
551 cmpa #2 ; is it output?
552 bne LA449 ; brif not
553 lda CINCTR ; is there anything waiting to be written?
554 beq LA444 ; brif not
555 jsr LA2A8 ; write final block of data
556 LA444 ldb #0xff ; write EOF block
557 jsr LA2AA
558 LA449 clr FILSTA ; mark tape file closed
559 LA44B rts
560 ; CSAVE command
561 CSAVE jsr LA578 ; parse filename
562 jsr GETCCH ; see what we have after the file name
563 beq LA469 ; brif none
564 jsr LB26D ; make sure there's a comma
565 ldb #'A ; make sure there's an A after
566 jsr LB26F
567 bne LA44B ; brif not end of line
568 clra ; file type 0 (basic program)
569 jsr LA65C ; write out header block
570 lda #-1 ; set output to tape
571 sta DEVNUM
572 clra ; set Z so we list the whole program
573 jmp LIST ; go list the program to tape
574 LA469 clra ; file type 0 (basic program)
575 ldx ZERO ; set to binary file mode
576 jsr LA65F ; write header block
577 clr FILSTA ; close files
578 inc BLKTYP ; set block type to data
579 jsr WRLDR ; write out a leader
580 ldx TXTTAB ; point to start of program
581 LA478 stx CBUFAD ; set buffer location
582 lda #255 ; block size to 255 bytes (max size)
583 sta BLKLEN
584 ldd VARTAB ; get end of program
585 subd CBUFAD ; how much is left?
586 beq LA491 ; brif we have nothing left
587 cmpd #255 ; do we have a full block worth?
588 bhs LA48C ; brif so
589 stb BLKLEN ; save actual remainder as block length
590 LA48C jsr SNDBLK ; write a block out
591 bra LA478 ; go do another block
592 LA491 neg BLKTYP ; set block type to 0xff (EOF)
593 clr BLKLEN ; no data in EOF block
594 jmp LA7E7 ; write EOF, stop tape, and return
595 ; CLOAD and CLOADM commands
596 CLOAD clr FILSTA ; close tape file
597 cmpa #'M ; is it ClOADM?
598 beq LA4FE ; brif so
599 leas 2,s ; clean up stack
600 jsr LA5C5 ; parse file name
601 jsr LA648 ; go find the file
602 tst CASBUF+10 ; is it binary?
603 beq LA4C8 ; brif so
604 lda CASBUF+9 ; is it ASCII?
605 beq LA4CD ; brif not
606 jsr LAD19 ; clear out existing program
607 lda #-1 ; set up for reading from tape
608 sta DEVNUM
609 inc FILSTA ; set tape file to input
610 jsr LA635 ; go read first block
611 jmp LAC7C ; go to immediate mode to read in the program
612 ; This is the EOF handler for immediate mode. It's rather assinine for this to be located here. It is
613 ; probably an artifact of a substantially different code layout prior to compacting the ROM to fit in
614 ; 8K.
615 LA4BF jsr RVEC13 ; do the RAM hook dance
616 jsr LA42D ; close file
617 jmp LAC73 ; go back to immediate mode
618 LA4C8 lda CASBUF+8 ; get file type
619 beq LA4D0 ; brif basic program
620 LA4CD jmp LA616 ; raise FM error
621 LA4D0 jsr LAD19 ; erase existing program
622 jsr CASON ; start reading tape
623 ldx TXTTAB ; get start of program storage
624 LA4D8 stx CBUFAD ; set load address for block
625 ldd CBUFAD ; get start of block
626 inca ; bump by 256
627 jsr LAC37 ; check if there's room for a maximum sized block of 255
628 jsr GETBLK ; go read a block
629 bne LA4F8 ; brif there was an error during reading
630 lda BLKTYP ; get type of block read
631 beq LA4F8 ; brif header block - IO error
632 bpl LA4D8 ; brif data block - read another
633 stx VARTAB ; save new end of program
634 bsr LA53B ; stop tape
635 ldx #LABED-1 ; point to "OK" prompt
636 jsr LB99C ; show prompt
637 jmp LACE9 ; reset various things and return
638 LA4F8 jsr LAD19 ; clear out partial program load
639 LA4FB jmp LA619 ; raise IO error
640 ; This is the CLOADM command
641 LA4FE jsr GETNCH ; eat the "M"
642 bsr LA578 ; parse file name
643 jsr LA648 ; go find the file
644 LA505 ldx ZERO ; default offset is 0
645 jsr GETCCH ; see if there's something after the file name
646 beq LA511 ; brif no offset
647 jsr LB26D ; make sure there's a comma
648 jsr LB73D ; evaluate offset to X
649 LA511 lda CASBUF+8 ; get file mode
650 cmpa #2 ; M/L program?
651 bne LA4CD ; brif not - FM error
652 ldd CASBUF+11 ; get load address
653 leau D,x ; add in offset
654 stu EXECJP ; set EXEC default address
655 tst CASBUF+10 ; is it binary?
656 bne LA4CD ; brif not
657 ldd CASBUF+13 ; get load address
658 leax d,x ; add in offset
659 stx CBUFAD ; set buffer address for loading
660 jsr CASON ; start up tape
661 LA52E jsr GETBLK ; read a block
662 bne LA4FB ; brif error reading
663 stx CBUFAD ; save new load address
664 tst BLKTYP ; set flags on block type
665 beq LA4FB ; brif another header - IO error
666 bpl LA52E ; brif it was data - read more
667 LA53B jmp LA7E9 ; turn off tape and return
668 ; The EXEC command
669 EXEC beq LA545 ; brif no argument - use default address
670 jsr LB73D ; evaluate EXEC address to X
671 stx EXECJP ; set new default EXEC address
672 LA545 jmp [EXECJP] ; transfer control to execution address
673 ; Break check for LIST so it doesn't interrupt ASCII saves. Why is this here instead of with the rest of the break
674 ; check logic or packaged up with LIST?
675 LA549 jsr RVEC11 ; do the RAM hook dance
676 lda DEVNUM ; get device number
677 inca ; is it tape?
678 beq LA5A1 ; brif so - don't do break check
679 jmp LADEB ; do the actual break check
680 ; Evaluate an expression and make sure it is within the limits of the screen and sets the cursor position.
681 ; This really should be located with the PRINT command.
682 LA554 jsr LB3E4 ; evaluate a positive expression to D
683 subd #511 ; is it within bounds?
684 lbhi LB44A ; brif not - error out
685 addd #VIDRAM+511 ; adjust to be within the screen (and undo the SUBD above)
686 std CURPOS ; set cursor position
687 rts
688 ; INKEY$ function
689 INKEY lda IKEYIM ; was a key down during break check?
690 bne LA56B ; brif so
691 jsr KEYIN ; poll the keyboard
692 LA56B clr IKEYIM ; reset the break check cache
693 sta FPA0+3 ; store result for later return
694 lbne LB68F ; brif a key was down - return it as a string
695 sta STRDES ; set string length to 0 (no key down)
696 jmp LB69B ; return the NULL string
697 ; Parse a filename
698 LA578 ldx #CFNBUF ; point to file name buffer
699 clr ,x+ ; zero out file name length
700 lda #0x20 ; space character to initialize file name
701 LA57F sta ,x+ ; put a space in the buffer
702 cmpx #CASBUF ; at end of file name?
703 bne LA57F ; brif not
704 jsr GETCCH ; get input character
705 beq LA5A1 ; brif no name present
706 jsr LB156 ; evaluate the file name expression
707 jsr LB654 ; point to start of the file name
708 ldu #CFNBUF ; point to file name buffer
709 stb ,u+ ; save string length
710 beq LA5A1 ; brif empty - we're done
711 skip2
712 LA598 ldb #8 ; copy 8 bytes
713 ; Move B bytes from (X) to (U)
714 LA59A lda ,x+ ; copy a byte
715 sta ,u+
716 decb ; done yet?
717 bne LA59A ; brif not
718 LA5A1 rts
719 ; Parse a device number and check validity
720 LA5A2 jsr LB26D ; check for comma and SN error if not
721 LA5A5 cmpa #'# ; do we have a #?
722 bne LA5AB ; brif not (it's optional)
723 jsr GETNCH ; munch the #
724 LA5AB jsr LB141 ; evaluate the expression
725 LA5AE jsr INTCNV ; convert it to an integer in D
726 rolb ; move sign of B into C
727 adca #0 ; add sign of B to A
728 bne LA61F ; brif A doesn't match the sign of B
729 rorb ; restore B (ADCA will have set C if B was negative)
730 stb DEVNUM ; set device number
731 jsr RVEC1 ; do the RAM hook dance
732 beq LA5C4 ; brif device number set to screen/keyboard (valid)
733 bpl LA61F ; brif not negative (not valid)
734 cmpb #-2 ; is it printer or tape?
735 blt LA61F ; brif not (not valid)
736 LA5C4 rts
737 ; Read file name from the line and do an error if anything follows it
738 LA5C5 bsr LA578 ; parse file name
739 jsr GETCCH ; set flags on current character
740 LA5C9 beq LA5C4 ; brif nothing there - it's good
741 jmp LB277 ; raise SN error
742 ; EOF functoin
743 EOF jsr RVEC14 ; do the RAM hook dance
744 lda DEVNUM ; get device number
745 pshs a ; save it (so we can restore it later)
746 bsr LA5AE ; check the device number (which is in FPA0)
747 jsr LA3ED ; check validity for reading
748 LA5DA clrb ; not EOF = 0 (FALSE)
749 lda DEVNUM ; get device number
750 beq LA5E4 ; brif keyboard - never EOF
751 tst CINCTR ; is there anything in the input buffer?
752 bne LA5E4 ; brif so - not EOF
753 comb ; set EOF flag to -1 (true)
754 LA5E4 puls a ; get back original device
755 sta DEVNUM ; restore it
756 LA5E8 sex ; sign extend result to 16 bits
757 jmp GIVABF ; go return the result
758 ; SKIPF command
759 SKIPF bsr LA5C5 ; parse file name
760 bsr LA648 ; look for the file
761 jsr LA6D1 ; read the file
762 bne LA619 ; brif error reading file
763 rts
764 ; OPEN command
765 OPEN jsr RVEC0 ; do the RAM hook dance
766 jsr LB156 ; get file status (input/output)
767 jsr LB6A4 ; get first character of status string
768 pshs b ; save status
769 bsr LA5A2 ; parse a comma then the device number
770 jsr LB26D ; make sure there's a comma
771 bsr LA5C5 ; parse the file name
772 lda DEVNUM ; get device number of the file
773 clr DEVNUM ; reset actual device to the screen
774 puls b ; get back status
775 cmpb #'I ; INPUT?
776 beq LA624 ; brif so - open a file for INPUT
777 cmpb #'O ; OUTPUT?
778 beq LA658 ; brif so - open a file for OUTPUT
779 LA616 ldb #21*2 ; raise FM error
780 skip2
781 LA619 ldb #20*2 ; raise I/O error
782 skip2
783 LA61C ldb #18*2 ; raise AO error
784 skip2
785 LA61F ldb #19*2 ; raise DN error
786 jmp LAC46
787 LA624 inca ; are we opening the tape?
788 bmi LA616 ; brif printer - FM error; printer can't be opened for READ
789 bne LA657 ; brif screen - screen is always open
790 bsr LA648 ; read header block
791 lda CASBUF+9 ; clear A if binary or machine language file
792 anda CASBUF+10
793 beq LA616 ; bad file mode if not data file
794 inc FILSTA ; open file for input
795 LA635 jsr LA701 ; start tape, read block
796 bne LA619 ; brif error during read
797 tst BLKTYP ; check block type
798 beq LA619 ; brif header block - something's wrong
799 bmi LA657 ; brif EOF
800 lda BLKLEN ; get length of block
801 beq LA635 ; brif empty block - read another
802 LA644 sta CINCTR ; set buffer count
803 bra LA652 ; reset buffer pointer
804 LA648 tst FILSTA ; is the file open?
805 bne LA61C ; brif so - AO error
806 bsr LA681 ; search for file
807 bne LA619 ; brif error on read
808 LA650 clr CINCTR ; mark buffer empty
809 LA652 ldx #CASBUF ; set buffer pointer to start of buffer
810 stx CINPTR
811 LA657 rts
812 LA658 inca ; check for tape device
813 bne LA657 ; brif not tape (nothing doing - it's always open)
814 inca ; make file type 1
815 LA65C ldx #0xffff ; ASCII and data mode
816 LA65F tst FILSTA ; is file open?
817 bne LA61C ; brif so - raise error
818 ldu #CASBUF ; point to tape buffer
819 stu CBUFAD ; set address of block to write
820 sta 8,u ; set file type
821 stx 9,u ; set ASCII flag and mode
822 ldx #CFNBUF+1 ; point to file name
823 jsr LA598 ; move file name to the tape buffer
824 clr BLKTYP ; set for header block
825 lda #15 ; 15 bytes in a header block
826 sta BLKLEN ; set block length
827 jsr LA7E5 ; write the block
828 lda #2 ; set file type to output
829 sta FILSTA
830 bra LA650 ; reset file pointers
831 ; Search for correct cassette file name
832 LA681 ldx #CASBUF ; point to cassette buffer
833 stx CBUFAD ; set location to read blocks to
834 LA686 lda CURLIN ; are we in immediate mode?
835 inca
836 bne LA696 ; brif not
837 jsr LA928 ; clear screen
838 ldx CURPOS ; get start of screen (set after clear)
839 ldb #'S ; for "searching"
840 stb ,x++ ; put it on the screen
841 stx CURPOS ; save cursor position to be one past the search indicator
842 LA696 bsr LA701 ; read a block
843 orb BLKTYP ; merge error flag with block type
844 bne LA6D0 ; brif error or not header
845 ldx #CASBUF ; point to block just read
846 ldu #CFNBUF+1 ; point to the desired name
847 ldb #8 ; compare 8 characters
848 clr ,-s ; set flag to "match"
849 LA6A6 lda ,x+ ; get character from just read block
850 ldy CURLIN ; immediate mode?
851 leay 1,y
852 bne LA6B4 ; brif not
853 clr DEVNUM ; set output to screen
854 jsr PUTCHR ; display character
855 LA6B4 suba ,u+ ; subtract from desired file name (nonzero if no match)
856 ora ,s ; merge with match flag
857 sta ,s ; save new match flag (will be nonzero if any character differs)
858 decb ; done all characters?
859 bne LA6A6 ; brif not - do another
860 lda ,s+ ; get match flag (and set flags)
861 beq LA6CB ; brif we have a match
862 tst -9,u ; did we actually have a file name or will any file do?
863 beq LA6CB ; brif any file will do
864 bsr LA6D1 ; go read past the file
865 bne LA6D0 ; return on error
866 bra LA686 ; keep looking
867 LA6CB lda #'F ; for "found"
868 bsr LA6F8 ; put "F" on screen
869 clra ; set Z to indicat eno errors
870 LA6D0 rts
871 LA6D1 tst CASBUF+10 ; check type of file
872 bne LA6DF ; brif "blocked" file
873 jsr CASON ; turn on tape
874 LA6D9 bsr GETBLK ; read a block
875 bsr LA6E5 ; error or EOF?
876 bra LA6D9 ; read another block
877 LA6DF bsr LA701 ; read a single block
878 bsr LA6E5 ; error or EOF?
879 bra LA6DF ; read another block
880 LA6E5 bne LA6ED ; got error reading block
881 lda BLKTYP ; check block type
882 nega ; A is 0 now if EOF
883 bmi LA700 ; brif not end of file
884 deca ; clear error indicator
885 LA6ED sta CSRERR ; set error flag
886 leas 2,s ; don't return to original caller
887 bra LA705 ; turn off motor and return
888 LA6F3 lda VIDRAM ; get first char on screen
889 eora #0x40 ; flip case
890 LA6F8 ldb CURLIN ; immediate mode?
891 incb
892 bne LA700 ; brif not
893 sta VIDRAM ; save flipped case character
894 LA700 rts
895 ; Read a single block from tape (for a "blocked" file)
896 LA701 bsr CASON ; start tape going
897 bsr GETBLK ; read block
898 LA705 jsr LA7E9 ; stop tape
899 ldb CSRERR ; get error status
900 rts
901 ; Read a block from tape - this does the heavy lifting
902 GETBLK orcc #0x50 ; disable interrupts (timing is important)
903 bsr LA6F3 ; reverse video of upper left character in direct mode
904 ldx CBUFAD ; point to destination buffer
905 clra ; reset read byte
906 LA712 bsr LA755 ; read a bit
907 rora ; move bit into accumulator
908 cmpa #0x3c ; have we synched on the start of the block data yet?
909 bne LA712 ; brif not
910 bsr LA749 ; read block type
911 sta BLKTYP
912 bsr LA749 ; get block size
913 sta BLKLEN
914 adda BLKTYP ; accumulate checksum
915 sta CCKSUM ; save current checksum
916 lda BLKLEN ; get back count
917 sta CSRERR ; initialize counter; we use this since it will be ovewritten later anyway
918 beq LA73B ; brif empty block
919 LA72B bsr LA749 ; read a byte
920 sta ,x ; save in buffer
921 cmpa ,x+ ; make sure it wrote
922 bne LA744 ; brif error if it didn't match
923 adda CCKSUM ; accumulate checksum
924 sta CCKSUM
925 dec CSRERR ; read all bytes?
926 bne LA72B ; brif not
927 LA73B bsr LA749 ; read checksum from tape
928 suba CCKSUM ; does it match?
929 beq LA746 ; brif so
930 lda #1 ; checksum error flag
931 skip2
932 LA744 lda #2 ; non-RAM error flag
933 LA746 sta CSRERR ; save error status
934 rts
935 LA749 lda #8 ; read 8 bits
936 sta CPULWD ; initialize counter
937 LA74D bsr LA755 ; read a bit
938 rora ; put it into accumulator
939 dec CPULWD ; got all 8 bits?
940 bne LA74D ; brif not
941 rts
942 LA755 bsr LA75D ; get time between transitions
943 ldb CPERTM ; get timer
944 decb
945 cmpb CMPMID ; set C if timer is below the transition point - high or 1; clear otherwise
946 rts
947 LA75D clr CPERTM ; reset timer
948 tst CBTPHA ; check which phase we synched on
949 bne LA773 ; brif HI-LO synch
950 LA763 bsr LA76C ; read input
951 bcs LA763 ; brif still high
952 LA767 bsr LA76C ; read input
953 bcc LA767 ; brif still low
954 rts
955 LA76C inc CPERTM ; bump timer
956 ldb PIA1 ; get input bit to C
957 rorb
958 rts
959 LA773 bsr LA76C ; read input
960 bcc LA773 ; brif still low
961 LA777 bsr LA76C ; read output
962 bcs LA777 ; brif still high
963 rts
964 ; Start tape and look for sync bytes
965 CASON orcc #0x50 ; disable interrupts
966 bsr LA7CA ; turn on tape
967 clr CPULWD ; reset timer
968 LA782 bsr LA763 ; wait for low-high transition
969 LA784 bsr LA7AD ; wait for it to go low again
970 bhi LA797 ; brif in range for 1200 Hz
971 LA788 bsr LA7A7 ; wait for it to go high again
972 blo LA79B ; brif in range for 2400 Hz
973 dec CPULWD ; decrement counter (synched on low-high)
974 lda CPULWD ; get counter
975 cmpa #-96 ; have we seen 96 1-0-1-0 patterns (48 0x55s)?
976 LA792 bne LA782 ; brif not - wait some more
977 sta CBTPHA ; save phase we synched on
978 rts
979 LA797 bsr LA7A7 ; wait for it to go high again
980 bhi LA784 ; brif another 1200 Hz, 2 in a row, try again
981 LA79B bsr LA7AD ; wait for it to go low again
982 blo LA788 ; brif another 2400 Hz; go try again for high
983 inc CPULWD ; bump counter
984 lda CPULWD ; get counter
985 suba #96 ; set 0 if we've seen enought 0-1-0-1 patterns (0xaa)
986 bra LA792 ; set phase and return or keep waiting
987 LA7A7 clr CPERTM ; reset period timer
988 bsr LA767 ; wait for high
989 bra LA7B1 ; set flags on result
990 LA7AD clr CPERTM ; reset period timer
991 bsr LA777 ; wait for low
992 LA7B1 ldb CPERTM ; get period count
993 cmpb CMP0 ; is it too long for 1200Hz?
994 bhi LA7BA ; brif so - reset counts
995 cmpb CMP1 ; set C if 2400Hz, clear C if 1200 Hz
996 rts
997 LA7BA clr CPULWD ; reset sync counter (too slow or drop out)
998 rts
999 ; MOTOR command
1000 MOTOR tfr a,b ; save ON/OFF
1001 jsr GETNCH ; eat the ON/OFF token
1002 cmpb #0xaa ; OFF?
1003 beq LA7E9 ; brif so - turn off tape
1004 cmpb #0x88 ; ON?
1005 jsr LA5C9 ; SN error if no match
1006 ; Turn on tape
1007 LA7CA lda PIA1+1 ; get motor control value
1008 ora #8 ; turn on bit 3 (starts motor)
1009 bsr LA7F0 ; put it back (dumb but it saves a byte)
1010 LA7D1 ldx ZERO ; maximum delay timer
1011 LA7D3 leax -1,x ; count down
1012 bne LA7D3 ; brif not at 0 yet
1013 rts
1014 ; Write a synch leader to tape
1015 WRLDR orcc #0x50 ; disable interrupts
1016 bsr LA7CA ; turn on tape
1017 ldx SYNCLN ; get count of 0x55s to write
1018 LA7DE bsr LA828 ; write a 0x55
1019 leax -1,x ; done?
1020 bne LA7DE ; brif not
1021 rts
1022 ; Write sync bytes and a block, then stop tape
1023 LA7E5 bsr WRLDR ; write sync
1024 LA7E7 bsr SNDBLK ; write block
1025 ; Turn off tape
1026 LA7E9 andcc #0xaf ; enable interrupts
1027 lda PIA1+1 ; get control register
1028 anda #0xf7 ; disable motor bit
1029 LA7F0 sta PIA1+1 ; set motor enable bit
1030 rts
1031 ; Write a block to tape.
1032 SNDBLK orcc #0x50 ; disable interrupts
1033 ldb BLKLEN ; get block size
1034 stb CSRERR ; initialize character counter
1035 lda BLKLEN ; initialize checksum
1036 beq LA805 ; brif empty block
1037 ldx CBUFAD ; point to tape buffer
1038 LA800 adda ,x+ ; accumulate checksum
1039 decb ; end of block data?
1040 bne LA800 ; brif not
1041 LA805 adda BLKTYP ; accumulate block type into checksum
1042 sta CCKSUM ; save calculated checksum
1043 ldx CBUFAD ; point to buffer
1044 bsr LA828 ; send a 0x55
1045 lda #0x3c ; and then a 0x3c
1046 bsr LA82A
1047 lda BLKTYP ; send block type
1048 bsr LA82A
1049 lda BLKLEN ; send block size
1050 bsr LA82A
1051 tsta ; empty block?
1052 beq LA824 ; brif so
1053 LA81C lda ,x+ ; send character from block data
1054 bsr LA82A
1055 dec CSRERR ; are we done yet?
1056 bne LA81C ; brif not
1057 LA824 lda CCKSUM ; send checksum
1058 bsr LA82A
1059 LA828 lda #0x55 ; send a 0x55
1060 LA82A pshs a ; save output byte
1061 ldb #1 ; initialize bit probe
1062 LA82E lda CLSTSN ; get ending value of last cycle
1063 sta PIA1 ; set DA
1064 ldy #LA85C ; point to sine wave table
1065 bitb ,s ; is bit set?
1066 bne LA848 ; brif so - do high frequency
1067 LA83B lda ,y+ ; get next sample (use all for low frequency)
1068 cmpy #LA85C+36 ; end of table?
1069 beq LA855 ; brif so
1070 sta PIA1 ; set output sample
1071 bra LA83B ; do another sample
1072 LA848 lda ,y++ ; get next sample (use every other for high frequency)
1073 cmpy #LA85C+36 ; end of table?
1074 beq LA855 ; brif so
1075 sta PIA1 ; send output sample
1076 bra LA848 ; do another sample
1077 LA855 sta CLSTSN ; save last sample that *would* have been sent
1078 lslb ; shift mask to next bit
1079 bcc LA82E ; brif not done all 8 bits
1080 puls a,pc ; get back original character and return
1081 ; This is the sample table for the tape sine wave
1082 LA85C fcb 0x82,0x92,0xaa,0xba,0xca,0xda
1083 fcb 0xea,0xf2,0xfa,0xfa,0xfa,0xf2
1084 fcb 0xea,0xda,0xca,0xba,0xaa,0x92
1085 fcb 0x7a,0x6a,0x52,0x42,0x32,0x22
1086 fcb 0x12,0x0a,0x02,0x02,0x02,0x0a
1087 fcb 0x12,0x22,0x32,0x42,0x52,0x6a
1088 ; SET command
1089 SET bsr LA8C1 ; get absolute screen position of graphics block
1090 pshs x ; save character location
1091 jsr LB738 ; evaluate comma then expression in B
1092 puls x ; get back character pointer
1093 cmpb #8 ; valid colour?
1094 bhi LA8D5 ; brif not
1095 decb ; normalize colours
1096 bmi LA895 ; brif colour 0 (use current colour)
1097 lda #0x10 ; 16 patterns per colour
1098 mul
1099 bra LA89D ; go save the colour
1100 LA895 ldb ,x ; get current value
1101 bpl LA89C ; brif not grahpic
1102 andb #0x70 ; keep only the colour
1103 skip1
1104 LA89C clrb ; reset block to all black
1105 LA89D pshs b ; save colour
1106 bsr LA90D ; force a )
1107 lda ,x ; get current screen value
1108 bmi LA8A6 ; brif graphic block already
1109 clra ; force all pixels off
1110 LA8A6 anda #0x0f ; keep only pixel data
1111 ora GRBLOK ; set the desired pixel
1112 ora ,s+ ; merge with desired colour
1113 LA8AC ora #0x80 ; force it to be a graphic block
1114 sta ,x ; put new block on screen
1115 rts
1116 ; RESET command
1117 RESET bsr LA8C1 ; get address of desired block
1118 bsr LA90D ; force a )
1119 clra ; zero block (no pixels)
1120 ldb ,x ; is it graphics?
1121 bpl LA8AC ; brif not - just blank the block
1122 com GRBLOK ; invert pixel data
1123 andb GRBLOK ; turn off the desired pixel
1124 stb ,x ; put new pixel data on screen
1125 rts
1126 ; Parse SET/RESET/POINT coordinates except for closing )
1127 LA8C1 jsr LB26A ; make sure it starts with (
1128 LA8C4 jsr RVEC21 ; do the RAM hook dance
1129 jsr LB70B ; get first coordinate
1130 cmpb #63 ; valid horizontal coordinate
1131 bhi LA8D5 ; brif out of range
1132 pshs b ; save horizontal coordinate
1133 jsr LB738 ; look for , followed by vertical coordinate
1134 cmpb #31 ; in range for vertical?
1135 LA8D5 bhi LA948 ; brif not
1136 pshs b ; save vertical coordinate
1137 lsrb ; divide by two (two blocks per row)
1138 lda #32 ; 32 bytes per row
1139 mul ; now we have the offset into video RAM
1140 ldx #VIDRAM ; point to start of screen
1141 leax d,x ; now X points to the correct character row
1142 ldb 1,s ; get horizontal coordinate
1143 lsrb ; divide by two (two per character cell)
1144 abx ; now we're pointing to the correct character cell
1145 puls a,b ; get back coordinates (vertical in A)
1146 anda #1 ; keep only row offset of vertical
1147 rorb ; get column offset of horizontal to C
1148 rola ; now we have "row * 2 + col" in A
1149 ldb #0x10 ; make a bit mask (one bit left of first pixel)
1150 LA8EE lsrb ; move mask right
1151 deca ; at the right pixel?
1152 bpl LA8EE ; brif not
1153 stb GRBLOK ; save graphics block mask
1154 rts
1155 ; POINT function
1156 POINT bsr LA8C4 ; evaluate coordinates
1157 ldb #0xff ; default colour value is -1 (not graphics)
1158 lda ,x ; get character
1159 bpl LA90A ; brif not graphics
1160 anda GRBLOK ; is desired pixel set?
1161 beq LA909 ; brif not - return 0 for "black"
1162 ldb ,x ; get graphics data
1163 lsrb ; shift right 4 to get colour in low bits
1164 lsrb
1165 lsrb
1166 lsrb
1167 andb #7 ; lose the graphics block bias
1168 LA909 incb ; shift colours into 1 to 8 range
1169 LA90A jsr LA5E8 ; convert B to floating point
1170 LA90D jmp LB267 ; make sure we have a ) and return
1171 ; CLS command
1172 CLS jsr RVEC22 ; do the RAM hook dance
1173 LA913 beq LA928 ; brif no colour - just do a basic screen clear
1174 jsr LB70B ; evaluate colour number
1175 cmpb #8 ; valid colour?
1176 bhi LA937 ; brif not - do the easter egg
1177 tstb ; color 0?
1178 beq LA925 ; brif so
1179 decb ; normalize to 0 based colour numbers
1180 lda #0x10 ; 16 blocks per colour
1181 mul ; now we have the base code for that colour
1182 orb #0x0f ; set all pixels
1183 LA925 orb #0x80 ; make it a graphics block
1184 skip2
1185 LA928 ldb #0x60 ; VDG screen space character
1186 ldx #VIDRAM ; point to start of screen
1187 LA92D stx CURPOS ; set cursor position
1188 LA92F stb ,x+ ; blank a character
1189 cmpx #VIDRAM+511 ; end of screen?
1190 bls LA92F ; brif not
1191 rts
1192 LA937 bsr LA928 ; clear te screen
1193 ldx #LA166-1 ; point to the easter egg
1194 jmp LB99C ; go display it
1195 ; Evaluate an expression to B, prefixed by a comma, and do FC error if 0
1196 LA93F jsr LB26D ; force a comma
1197 LA942 jsr LB70B ; evaluate expression to B
1198 tstb ; is it 0?
1199 bne LA984 ; brif not - return
1200 LA948 jmp LB44A ; raise FC error
1201 ; SOUND command
1202 SOUND bsr LA942 ; evaluate frequency
1203 stb SNDTON ; save it
1204 bsr LA93F ; evaluate duration (after a comma)
1205 LA951 lda #4 ; constant factor for duration (each increment is 1/15 of a second)
1206 mul
1207 std SNDDUR ; save length of sound (IRQ will count it down)
1208 lda PIA0+3 ; enable 60 Hz interrupt
1209 ora #1
1210 sta PIA0+3
1211 clr ARYDIS ; clear array disable flag for some reason
1212 bsr LA9A2 ; connect DAC to MUX output
1213 bsr LA976 ; turn on sound
1214 LA964 bsr LA985 ; store mid range output value and delay
1215 lda #0xfe ; store high value and delay
1216 bsr LA987
1217 bsr LA985 ; store mid range value and delay
1218 lda #2 ; store low value and delay
1219 bsr LA987
1220 ldx SNDDUR ; has timer expired?
1221 bne LA964 ; brif not, do another wave
1222 ; Disable sound output
1223 LA974 clra ; bit 3 to 0 will disable output
1224 skip2
1225 ; Enable sound output
1226 LA976 lda #8 ; bit 3 set to enable output
1227 sta ,-s ; save desired value
1228 lda PIA1+3 ; get control register value
1229 anda #0xf7 ; reset value
1230 ora ,s+ ; set to desired value
1231 sta PIA1+3 ; set new sound output status
1232 LA984 rts
1233 LA985 lda #0x7e ; mid range value for DAC
1234 LA987 sta PIA1 ; set DAC output value
1235 lda SNDTON ; get frequency
1236 LA98C inca ; increment it (gives shorter count with higher values, so higher frequencies work)
1237 bne LA98C ; brif not done yet
1238 rts
1239 ; AUDIO command
1240 AUDIO tfr a,b ; save ON/OFF token
1241 jsr GETNCH ; munch the ON/OFF token
1242 cmpb #0xaa ; OFF?
1243 beq LA974 ; brif so
1244 subb #0x88 ; ON?
1245 jsr LA5C9 ; do SN error if not
1246 incb ; now B is 1 - cassette sound source
1247 bsr LA9A2 ; set MUX input to tape
1248 bra LA976 ; enable sound
1249 ; Set MUX source to value in B
1250 LA9A2 ldu #PIA0+1 ; point to PIA0 control register A
1251 bsr LA9A7 ; program bit 0 then fall through for bit 1
1252 LA9A7 lda ,u ; get control register value
1253 anda #0xf7 ; reset mux control bit
1254 asrb ; shift desired value to C
1255 bcc LA9B0 ; brif this bit is clear
1256 ora #8 ; set the bit
1257 LA9B0 sta ,u++ ; set register value and move to next register
1258 rts
1259 ; IRQ service routine
1260 BIRQSV lda PIA0+3 ; check for VSYNC interrupt
1261 bpl LA9C5 ; brif not - return. BUG: should clear HSYNC interrupt status first
1262 lda PIA0+2 ; clear VSYNC interrupt status
1263 ldx >SNDDUR ; are we counting down for SOUND? (force extended in case DP is modified)
1264 beq LA9C5 ; brif not
1265 leax -1,x ; count down one tick
1266 stx >SNDDUR ; save new count (forced extended in case DP is modified)
1267 LA9C5 rti
1268 ; JOYSTK function
1269 JOYSTK jsr LB70E ; evaluate which joystick axis is desired
1270 cmpb #3 ; valid axis?
1271 lbhi LB44A ; brif not
1272 tstb ; want axis 0?
1273 bne LA9D4 ; brif not
1274 bsr GETJOY ; read axis data if axis 0
1275 LA9D4 ldx #POTVAL ; point to axis values
1276 ldb FPA0+3 ; get desired axis
1277 ldb b,x ; get axis value
1278 jmp LB4F3 ; return value
1279 ; Read all four joystick axes. Note that this routine will try 10 times to get a value that matches
1280 ; the value obtained during the *previous call to this routine*. Thus, if the axis value has changed,
1281 ; this routine will do the read *ten times* before just returning the last value. This is assininely
1282 ; slow and probably a bug since it seems more logical to look for two matching reads in a row. Note
1283 ; also that this routine should be using PSHS and PULS but it doesn't.
1284 GETJOY bsr LA974 ; turn off sound
1285 ldx #POTVAL+4 ; point to the end of the axis data (we'll work backwards)
1286 ldb #3 ; start with axis 3
1287 LA9E5 lda #10 ; 10 tries to see if we match *the last call* to this routine
1288 std ,--s ; save retry counter and axis number
1289 bsr LA9A2 ; set MUX for the correct axis
1290 LA9EB ldd #0x4080 ; set initial trial value to mid range and the next difference to add/subtract to half
1291 LA9EE sta ,-s ; store the add/subtract value
1292 orb #2 ; keep rs232 output marking
1293 stb PIA1 ; set DAC output to the trial value
1294 eorb #2 ; remove RS232 output value
1295 lda PIA0 ; read the comparator
1296 bmi LA9FF ; brif comparator output is high (DAC is lower than the axis value)
1297 subb ,s ; subtract next bit value (split the difference toward 0)
1298 skip2
1299 LA9FF addb ,s ; add next bit value (split the different toward infinity)
1300 lda ,s+ ; get bit value back
1301 lsra ; cut in half
1302 cmpa #1 ; have we done that last value for the DAC?
1303 bne LA9EE ; brif not
1304 lsrb ; normalize the axis value
1305 lsrb
1306 cmpb -1,x ; does it match the read from the last call to this routine?
1307 beq LAA12 ; brif so
1308 dec ,s ; are we out of retries?
1309 bne LA9EB ; brif not - try again
1310 LAA12 stb ,-x ; save new value and move pointer back
1311 ldd ,s++ ; get axis counter and clean up retry counter
1312 decb ; move to next axis
1313 bpl LA9E5 ; brif still more axes to do
1314 rts
1315 ; This is the "bottom half" of the character fetching routines.
1316 BROMHK cmpa #'9+1 ; is it >= colon?
1317 bhs LAA28 ; brif so Z set if colon, C clear.
1318 cmpa #0x20 ; space?
1319 bne LAA24 ; brif not
1320 jmp GETNCH ; move on to another character if space
1321 LAA24 suba #'0 ; normalize ascii digit to 0-9; we already handled above digit 9
1322 suba #-'0 ; this will cause a carry for any value that was already positive
1323 LAA28 rts
1324 ; Jump table for functions
1325 LAA29 fdb SGN ; SGN 0x80
1326 fdb INT ; INT 0x81
1327 fdb ABS ; ABS 0x82
1328 fdb USRJMP ; USR 0x83
1329 fdb RND ; RND 0x84
1330 fdb SIN ; SIN 0x85
1331 fdb PEEK ; PEEK 0x86
1332 fdb LEN ; LEN 0x87
1333 fdb STR ; STR$ 0x88
1334 fdb VAL ; VAL 0x89
1335 fdb ASC ; ASC 0x8a
1336 fdb CHR ; CHR$ 0x8b
1337 fdb EOF ; EOF 0x8c
1338 fdb JOYSTK ; JOYSTK 0x8d
1339 fdb LEFT ; LEFT$ 0x8e
1340 fdb RIGHT ; RIGHT$ 0x8f
1341 fdb MID ; MID$ 0x90
1342 fdb POINT ; POINT 0x91
1343 fdb INKEY ; INKEY$ 0x92
1344 fdb MEM ; MEM 0x93
1345 ; Operator precedence and jump table (binary ops except relational)
1346 LAA51 fcb 0x79 ; +
1347 fdb LB9C5
1348 fcb 0x79 ; -
1349 fdb LB9BC
1350 fcb 0x7b ; *
1351 fdb LBACC
1352 fcb 0x7b ; /
1353 fdb LBB91
1354 fcb 0x7f ; ^ (exponentiation)
1355 fdb EXPJMP
1356 fcb 0x50 ; AND
1357 fdb LB2D5
1358 fcb 0x46 ; OR
1359 fdb LB2D4
1360 ; Reserved words table for commands
1361 LAA66 fcs 'FOR' ; 0x80
1362 fcs 'GO' ; 0x81
1363 fcs 'REM' ; 0x82
1364 fcs "'" ; 0x83
1365 fcs 'ELSE' ; 0x84
1366 fcs 'IF' ; 0x85
1367 fcs 'DATA' ; 0x86
1368 fcs 'PRINT' ; 0x87
1369 fcs 'ON' ; 0x88
1370 fcs 'INPUT' ; 0x89
1371 fcs 'END' ; 0x8a
1372 fcs 'NEXT' ; 0x8b
1373 fcs 'DIM' ; 0x8c
1374 fcs 'READ' ; 0x8d
1375 fcs 'RUN' ; 0x8e
1376 fcs 'RESTORE' ; 0x8f
1377 fcs 'RETURN' ; 0x90
1378 fcs 'STOP' ; 0x91
1379 fcs 'POKE' ; 0x92
1380 fcs 'CONT' ; 0x93
1381 fcs 'LIST' ; 0x94
1382 fcs 'CLEAR' ; 0x95
1383 fcs 'NEW' ; 0x96
1384 fcs 'CLOAD' ; 0x97
1385 fcs 'CSAVE' ; 0x98
1386 fcs 'OPEN' ; 0x99
1387 fcs 'CLOSE' ; 0x9a
1388 fcs 'LLIST' ; 0x9b
1389 fcs 'SET' ; 0x9c
1390 fcs 'RESET' ; 0x9d
1391 fcs 'CLS' ; 0x9e
1392 fcs 'MOTOR' ; 0x9f
1393 fcs 'SOUND' ; 0xa0
1394 fcs 'AUDIO' ; 0xa1
1395 fcs 'EXEC' ; 0xa2
1396 fcs 'SKIPF' ; 0xa3
1397 fcs 'TAB(' ; 0xa4
1398 fcs 'TO' ; 0xa5
1399 fcs 'SUB' ; 0xa6
1400 fcs 'THEN' ; 0xa7
1401 fcs 'NOT' ; 0xa8
1402 fcs 'STEP' ; 0xa9
1403 fcs 'OFF' ; 0xaa
1404 fcs '+' ; 0xab
1405 fcs '-' ; 0xac
1406 fcs '*' ; 0xad
1407 fcs '/' ; 0xae
1408 fcs '^' ; 0xaf
1409 fcs 'AND' ; 0xb0
1410 fcs 'OR' ; 0xb1
1411 fcs '>' ; 0xb2
1412 fcs '=' ; 0xb3
1413 fcs '<' ; 0xb4
1414 ; Reserved word list for functions
1415 LAB1A fcs 'SGN' ; 0x80
1416 fcs 'INT' ; 0x81
1417 fcs 'ABS' ; 0x82
1418 fcs 'USR' ; 0x83
1419 fcs 'RND' ; 0x84
1420 fcs 'SIN' ; 0x85
1421 fcs 'PEEK' ; 0x86
1422 fcs 'LEN' ; 0x87
1423 fcs 'STR$' ; 0x88
1424 fcs 'VAL' ; 0x89
1425 fcs 'ASC' ; 0x8a
1426 fcs 'CHR$' ; 0x8b
1427 fcs 'EOF' ; 0x8c
1428 fcs 'JOYSTK' ; 0x8d
1429 fcs 'LEFT$' ; 0x8e
1430 fcs 'RIGHT$' ; 0x8f
1431 fcs 'MID$' ; 0x90
1432 fcs 'POINT' ; 0x91
1433 fcs 'INKEY$' ; 0x92
1434 fcs 'MEM' ; 0x93
1435 ; Jump table for commands
1436 LAB67 fdb FOR ; 0x80 FOR
1437 fdb GO ; 0x81 GO
1438 fdb REM ; 0x82 REM
1439 fdb REM ; 0x83 '
1440 fdb REM ; 0x84 ELSE
1441 fdb IFTOK ; 0x85 IF
1442 fdb DATA ; 0x86 DATA
1443 fdb PRINT ; 0x87 PRINT
1444 fdb ON ; 0x88 ON
1445 fdb INPUT ; 0x89 INPUT
1446 fdb ENDTOK ; 0x8a END
1447 fdb NEXT ; 0x8b NEXT
1448 fdb DIM ; 0x8c DIM
1449 fdb READ ; 0x8d READ
1450 fdb RUN ; 0x8e RUN
1451 fdb RESTOR ; 0x8f RESTORE
1452 fdb RETURN ; 0x90 RETURN
1453 fdb STOP ; 0x91 STOP
1454 fdb POKE ; 0x92 POKE
1455 fdb CONT ; 0x93 CONT
1456 fdb LIST ; 0x94 LIST
1457 fdb CLEAR ; 0x95 CLEAR
1458 fdb NEW ; 0x96 NEW
1459 fdb CLOAD ; 0x97 CLOAD
1460 fdb CSAVE ; 0x98 CSAVE
1461 fdb OPEN ; 0x99 OPEN
1462 fdb CLOSE ; 0x9a CLOSE
1463 fdb LLIST ; 0x9b LLIST
1464 fdb SET ; 0x9c SET
1465 fdb RESET ; 0x9d RESET
1466 fdb CLS ; 0x9e CLS
1467 fdb MOTOR ; 0x9f MOTOR
1468 fdb SOUND ; 0xa0 SOUND
1469 fdb AUDIO ; 0xa1 AUDIO
1470 fdb EXEC ; 0xa2 EXEC
1471 fdb SKIPF ; 0xa3 SKIPF
1472 ; Error message table
1473 LABAF fcc 'NF' ; 0 NEXT without FOR
1474 fcc 'SN' ; 1 Syntax error
1475 fcc 'RG' ; 2 RETURN without GOSUB
1476 fcc 'OD' ; 3 Out of data
1477 fcc 'FC' ; 4 Illegal function call
1478 fcc 'OV' ; 5 Overflow
1479 fcc 'OM' ; 6 Out of memory
1480 fcc 'UL' ; 7 Undefined line number
1481 fcc 'BS' ; 8 Bad subscript
1482 fcc 'DD' ; 9 Redimensioned array
1483 fcc '/0' ; 10 Division by 0
1484 fcc 'ID' ; 11 Illegal direct statement
1485 fcc 'TM' ; 12 Type mismatch
1486 fcc 'OS' ; 13 Out of string space
1487 fcc 'LS' ; 14 String too long
1488 fcc 'ST' ; 15 String formula too complex
1489 fcc 'CN' ; 16 Can't continue
1490 fcc 'FD' ; 17 Bad file data
1491 fcc 'AO' ; 18 File already open
1492 fcc 'DN' ; 19 Device number error
1493 fcc 'IO' ; 20 Input/output error
1494 fcc 'FM' ; 21 Bad file mode
1495 fcc 'NO' ; 22 File not open
1496 fcc 'IE' ; 23 Input past end of file
1497 fcc 'DS' ; 24 Direct statement in file
1498 LABE1 fcn ' ERROR'
1499 LABE8 fcn ' IN '
1500 LABED fcb 0x0d
1501 LABEE fcc 'OK'
1502 fcb 0x0d,0x00
1503 LABF2 fcb 0x0d
1504 fcn 'BREAK'
1505 ; Search stack for a FOR/NEXT stack frame. Stop search when something that isn't a FOR/NEXT
1506 ; stack frame is found. Enter with the index variable descriptor pointer in VARDES, or NULL
1507 ; for the first match.
1508 ;
1509 ; NOTE: this routine can be reworked to avoid needed two temporaries by taking advantage of the
1510 ; 6809's registers. This requires some minor tweaks where the routine is called. Further, the
1511 ; use of B is completely pointless and, even if B is going to be used, why is it reloaded on
1512 ; every loop?
1513 LABF9 leax 4,s ; skip past our caller and the main command loop return address
1514 LABFB ldb #18 ; each FOR/NEXT frame is 18 bytes
1515 stx TEMPTR ; save current search pointer
1516 lda ,x ; get first byte of this frame
1517 suba #0x80 ; set to 0 if FOR/NEXT
1518 bne LAC1A ; brif not FOR/NEXT (we hit the end of the stack for a GOSUB frame)
1519 ldx 1,x ; get index variable descriptor
1520 stx TMPTR1 ; save it
1521 ldx VARDES ; get desired index descriptor
1522 beq LAC16 ; brif NULL - we found something
1523 cmpx TMPTR1 ; does this one match?
1524 beq LAC1A ; brif so
1525 ldx TEMPTR ; get back frame pointer
1526 abx ; move to next entry
1527 bra LABFB ; check next block of data
1528 LAC16 ldx TMPTR1 ; get index variable of this frame
1529 stx VARDES ; set it as the one found
1530 LAC1A ldx TEMPTR ; get matching frame pointer
1531 tsta ; set Z if FOR/NEXT
1532 rts
1533 ; This is a block copy routine which copies from top to bottom. It's not clear that the use of
1534 ; this routine actually saves any ROM space compared to just implementing the copies directly
1535 ; once all the marshalling to set up the parameter variables is taken into account.
1536 LAC1E bsr LAC37 ; check to see if stack collides with D
1537 LAC20 ldu V41 ; point to destination
1538 leau 1,u ; offset for pre-dec
1539 ldx V43 ; point to source
1540 leax 1,x ; offset for pre-dec
1541 LAC28 lda ,-x ; get source byte
1542 pshu a ; store at destination (sta ,-u would be less weird)
1543 cmpx V47 ; at the bottom of the copy?
1544 bne LAC28 ; brif not
1545 stu V45 ; save final destination address
1546 LAC32 rts
1547 ; Check for 2*B (0 <= B <= 127) bytes for free memory
1548 LAC33 clra ; zero extend
1549 aslb ; times 2 (loses bit 7 of B)
1550 addd ARYEND ; add to top of used memory
1551 LAC37 addd #STKBUF ; add a fudge factor for interpreter operation
1552 bcs LAC44 ; brif >65535!
1553 sts BOTSTK ; get current stack pointer
1554 cmpd BOTSTK ; is our new address above that?
1555 blo LAC32 ; brif not - no error
1556 LAC44 ldb #6*2 ; raise OM error
1557 ; The error servicing routine
1558 LAC46 jsr RVEC16 ; do the RAM hook dance (ON ERROR reserved hook)
1559 LAC49 jsr RVEC17 ; do the RAM hook dance again
1560 jsr LA7E9 ; turn off tape
1561 jsr LA974 ; disable sound
1562 jsr LAD33 ; reset stack, etc.
1563 clr DEVNUM ; reset output to screen
1564 jsr LB95C ; do a newline
1565 jsr LB9AF ; send a ?
1566 ldx #LABAF ; point to error table
1567 abx ; offset to correct message
1568 bsr LACA0 ; send a char from X
1569 bsr LACA0 ; send another char from X
1570 ldx #LABE1-1 ; point to "ERROR" message
1571 LAC68 jsr LB99C ; print ERROR message (or BREAK)
1572 lda CURLIN ; are we in immediate mode?
1573 inca
1574 beq LAC73 ; brif not - go to immediate mode
1575 jsr LBDC5 ; print "IN ****"
1576 ; This is the immediate mode loop
1577 LAC73 jsr LB95C ; do a newline if needed
1578 LAC76 ldx #LABEE-1 ; point to prompt (without leading CR)
1579 jsr LB99C ; show prompt
1580 LAC7C jsr LA390 ; read an input line
1581 ldu #0xffff ; flag immediate mode
1582 stu CURLIN
1583 bcs LAC7C ; brif we ended on BREAK - just go for another line
1584 tst CINBFL ; EOF?
1585 lbne LA4BF ; brif so
1586 stx CHARAD ; save start of input line as input pointer
1587 jsr GETNCH ; get character from input line
1588 beq LAC7C ; brif no input
1589 bcs LACA5 ; brif numeric - adding or removing a line number
1590 ldb #2*24 ; code for "direct statement in file"
1591 tst DEVNUM ; keyboard input?
1592 bne LAC46 ; brif not - complain about direct statement
1593 jsr LB821 ; go tokenize the input line
1594 jmp LADC0 ; go execute the newly tokenized line
1595 LACA0 lda ,x+ ; get character and advance pointer
1596 jmp LB9B1 ; output it
1597 LACA5 jsr LAF67 ; convert line number to binary
1598 ldx BINVAL ; get converted number
1599 stx LINHDR ; put it before the line we just read
1600 jsr LB821 ; tokenize the input line
1601 stb TMPLOC ; save line length
1602 bsr LAD01 ; find where the line should be in the program
1603 bcs LACC8 ; brif the line number isn't already present
1604 ldd V47 ; get address where the line is in the program
1605 subd ,x ; get the difference between here and the end of the line (negative)
1606 addd VARTAB ; subtract line length from the end of the program
1607 std VARTAB ; save new end of program address
1608 ldu ,x ; get start of next line
1609 LACC0 pulu a ; get source byte (lda ,u+ would be less weird)
1610 sta ,x+ ; move it down
1611 cmpx VARTAB ; have we moved everything yet?
1612 bne LACC0 ; brif not
1613 LACC8 lda LINBUF ; see if there is actually a line to input
1614 beq LACE9 ; brif not - we just needed to remove the line
1615 ldd VARTAB ; get current end of program
1616 std V43 ; set as source pointer
1617 addb TMPLOC ; add in the length of the new line
1618 adca #0
1619 std V41 ; save destination pointer
1620 jsr LAC1E ; make sure there's enough room and then make a hole for the new line
1621 ldu #LINHDR-2 ; point to the line (well, 4 bytes before it, incl line number and fake next line pointer)
1622 LACDD pulu a ; get byte from new line (lda ,u+ would be less weird)
1623 sta ,x+ ; stow it
1624 cmpx V45 ; at the end of the hole we just made?
1625 bne LACDD ; brif not
1626 ldx V41 ; get save new top of program address
1627 stx VARTAB
1628 LACE9 bsr LAD21 ; reset variables, etc.
1629 bsr LACEF ; adjust next line pointers
1630 bra LAC7C ; go read another input line
1631 ; Recompute next line pointers
1632 LACEF ldx TXTTAB ; point to start of program
1633 LACF1 ldd ,x ; get address of next line
1634 beq LAD16 ; brif end of program
1635 leau 4,x ; move past pointer and line number
1636 LACF7 lda ,u+ ; are we at the end of the line?
1637 bne LACF7 ; brif not
1638 stu ,x ; save new next line pointer
1639 ldx ,x ; point to next line
1640 bra LACF1 ; process the next line
1641 ; Find a line in the program
1642 LAD01 ldd BINVAL ; get desired line number
1643 ldx TXTTAB ; point to start of program
1644 LAD05 ldu ,x ; get address of next line
1645 beq LAD12 ; brif end of program
1646 cmpd 2,x ; do we have a match?
1647 bls LAD14 ; brif our search number is <= the number here
1648 ldx ,x ; move to next line
1649 bra LAD05 ; check another line
1650 LAD12 orcc #1 ; set C for not found
1651 LAD14 stx V47 ; save address of matching line *or* line just after where it would have been
1652 LAD16 rts
1653 ; NEW command
1654 ; This routine has multiple entry points used for various "levels" of NEW
1655 NEW bne LAD14 ; brif there was input given; should be LAD16!
1656 LAD19 ldx TXTTAB ; point to start of program
1657 clr ,x+ ; blank out program (with NULL next line pointer)
1658 clr ,x+
1659 stx VARTAB ; save end of program
1660 LAD21 ldx TXTTAB ; get start of program
1661 jsr LAEBB ; put input pointer there
1662 LAD26 ldx MEMSIZ ; reset string space
1663 stx STRTAB
1664 jsr RESTOR ; reset DATA pointer
1665 ldx VARTAB ; clear out scalars and arrays
1666 stx ARYTAB
1667 stx ARYEND
1668 LAD33 ldx #STRSTK ; reset the string stack
1669 stx TEMPPT
1670 ldx ,s ; get return address (we're going to reset the stack)
1671 lds FRETOP ; reset the stack to top of memory
1672 clr ,-s ; put stopper so FOR/NEXT search will actually stop here
1673 clr OLDPTR ; reset "CONT" state
1674 clr OLDPTR+1
1675 clr ARYDIS ; un-disable arrays
1676 jmp ,x ; return to original caller
1677 ; FOR command
1678 FOR lda #0x80 ; disable array parsing
1679 sta ARYDIS
1680 jsr LET ; assign start value to index
1681 jsr LABF9 ; search stack for matching FOR/NEXT frame
1682 leas 2,s ; lose return address
1683 bne LAD59 ; brif variable not already being used
1684 ldx TEMPTR ; get address of matched data
1685 leas b,x ; move stack pointer to the end of it (B is set to 18 in the stack search)
1686 LAD59 ldb #9 ; is there room for 18 bytes in memory?
1687 jsr LAC33
1688 jsr LAEE8 ; get address of the end of this statement in X
1689 ldd CURLIN ; get line number
1690 pshs x,b,a ; save next line address and current line number
1691 ldb #0xa5 ; make sure we have TO
1692 jsr LB26F
1693 jsr LB143 ; make sure we have a numeric index
1694 jsr LB141 ; evaluate terminal condition value
1695 ldb FP0SGN ; pack FPA0 in place
1696 orb #0x7f
1697 andb FPA0
1698 stb FPA0
1699 ldy #LAD7F ; where to come back to
1700 jmp LB1EA ; stash terminal condition on the stack
1701 LAD7F ldx #LBAC5 ; point to FP 1.0 (default step)
1702 jsr LBC14 ; unpack it to FPA0
1703 jsr GETCCH ; get character after the terminal
1704 cmpa #0xa9 ; is it STEP?
1705 bne LAD90 ; brif not
1706 jsr GETNCH ; eat STEP
1707 jsr LB141 ; evaluate step condition
1708 LAD90 jsr LBC6D ; get "status" of FPA0
1709 jsr LB1E6 ; stash FPA0 on the stack (for step value)
1710 ldd VARDES ; get variable descriptor pointer
1711 pshs d ; put that on the stack too
1712 lda #0x80 ; flag the frame as a FOR/NEXT frame
1713 pshs a
1714 ; Main command interpretation loop
1715 LAD9E jsr RVEC20 ; do the RAM hook dance
1716 andcc #0xaf ; make sure interrupts are running
1717 bsr LADEB ; check for BREAK/pause
1718 ldx CHARAD ; get input pointer
1719 stx TINPTR ; save input pointer for start of line
1720 lda ,x+ ; get current input character
1721 beq LADB4 ; brif end of line - move to another line
1722 cmpa #': ; end of statement?
1723 beq LADC0 ; brif so - keep processing
1724 LADB1 jmp LB277 ; raise a syntax error
1725 LADB4 lda ,x++ ; get MSB of next line pointer and skip past pointer
1726 sta ENDFLG
1727 beq LAE15 ; brif MSB of next line address is 0 (do END)
1728 ldd ,x+ ; get line number but only advance one
1729 std CURLIN ; set current line number
1730 stx CHARAD ; set input pointer to one before line text
1731 LADC0 jsr GETNCH ; move past statement separator or to first character in line
1732 bsr LADC6 ; process a command
1733 bra LAD9E ; handle next statement or line
1734 LADC6 beq LAE40 ; return if end of statement
1735 tsta ; is it a token?
1736 lbpl LET ; brif not - do a LET
1737 cmpa #0xa3 ; above SKIPF?
1738 bhi LADDC ; brif so
1739 ldx COMVEC+3 ; point to jump table
1740 lsla ; two bytes per entry (loses the token bias)
1741 tfr a,b ; put it in B for unsigned ABX
1742 abx
1743 jsr GETNCH ; move past token
1744 jmp [,x] ; transfer control to the handler (which will return to the main loop)
1745 LADDC cmpa #0xb4 ; is it a non-executable token?
1746 bls LADB1 ; brif so
1747 jmp [COMVEC+13] ; transfer control to ECB command handler
1748 ; RESTORE command
1749 RESTOR ldx TXTTAB ; point to beginning of the program
1750 leax -1,x ; move back one (to compensate for "GETNCH")
1751 LADE8 stx DATPTR ; save as new data pointer
1752 rts
1753 ; BREAK check
1754 LADEB jsr KEYIN ; read keyboard
1755 beq LADFA ; brif no key down
1756 LADF0 cmpa #3 ; BREAK?
1757 beq STOP ; brif so - do a STOP
1758 cmpa #0x13 ; pause (SHIFT-@)?
1759 beq LADFB ; brif so
1760 sta IKEYIM ; cache key for later INKEY$ so break check doesn't break INKEY$
1761 LADFA rts
1762 LADFB jsr KEYIN ; read keyboard
1763 beq LADFB ; brif no key down
1764 bra LADF0 ; process pressed key in case BREAK or SHIFT-@ again
1765 ; END command
1766 ENDTOK jsr LA426 ; close files
1767 jsr GETCCH ; re-get input character
1768 bra LAE0B
1769 ; STOP command
1770 STOP orcc #1 ; flag "STOP"
1771 LAE0B bne LAE40 ; brif not end of statement
1772 ldx CHARAD ; save current input pointer
1773 stx TINPTR
1774 LAE11 ror ENDFLG ; save END/STOP flag (C)
1775 leas 2,s ; lose return address
1776 LAE15 ldx CURLIN ; get current input line (end of program comes here)
1777 cmpx #0xffff ; immediate mode?
1778 beq LAE22 ; brif so
1779 stx OLDTXT ; save line where we stopped executing
1780 ldx TINPTR ; get input pointer
1781 stx OLDPTR ; save location where we stopped executing
1782 LAE22 clr DEVNUM ; reset to screen/keyboard
1783 ldx #LABF2-1 ; point to BREAK message
1784 tst ENDFLG ; are we doing "BREAK"?
1785 lbpl LAC73 ; brif not
1786 jmp LAC68 ; go do the BREAK message and return to main loop
1787 ; CONT command
1788 CONT bne LAE40 ; brif not end of statement
1789 ldb #2*16 ; code for can't continue
1790 ldx OLDPTR ; get saved execution pointer
1791 lbeq LAC46 ; brif no saved pointer - raise CN error
1792 stx CHARAD ; reset input pointer
1793 ldx OLDTXT ; reset current line number
1794 stx CURLIN
1795 LAE40 rts
1796 ; CLEAR command
1797 CLEAR beq LAE6F ; brif no argument
1798 jsr LB3E6 ; evaluate string space size
1799 pshs d ; save it
1800 ldx MEMSIZ ; get memory size (top of memory)
1801 jsr GETCCH ; is there anything after the string space size?
1802 beq LAE5A ; brif not
1803 jsr LB26D ; force a comma
1804 jsr LB73D ; get top of memory value in X
1805 leax -1,x ; move back one (top of cleared space)
1806 cmpx TOPRAM ; is it within the memory available?
1807 bhi LAE72 ; brif higher than top of memory - OM error
1808 LAE5A tfr x,d ; so we can do math for checking memory usage
1809 subd ,s++ ; subtract out string space value
1810 bcs LAE72 ; brif less than 0
1811 tfr d,u ; U is bottom of cleared space
1812 subd #STKBUF ; also account for slop space
1813 bcs LAE72 ; brif less than 0
1814 subd VARTAB ; is there still room for the program?
1815 blo LAE72 ; brif not
1816 stu FRETOP ; set top of free memory
1817 stx MEMSIZ ; set size of usable memory
1818 LAE6F jmp LAD26 ; erase variables, etc.
1819 LAE72 jmp LAC44 ; raise OM error
1820 ; RUN command
1821 RUN jsr RVEC18 ; do the RAM hook dance
1822 jsr LA426 ; close any open files
1823 jsr GETCCH ; is there a line number
1824 lbeq LAD21 ; brif no line number - start from beginning
1825 jsr LAD26 ; clear variables, etc.
1826 bra LAE9F ; "GOTO" the line number
1827 ; GO command (GOTO and GOSUB)
1828 GO tfr a,b ; save TO/SUB
1829 LAE88 jsr GETNCH ; eat the TO/SUB token
1830 cmpb #0xa5 ; TO?
1831 beq LAEA4 ; brif GOTO
1832 cmpb #0xa6 ; SUB?
1833 bne LAED7 ; brif not
1834 ldb #3 ; room for 6 bytes?
1835 jsr LAC33
1836 ldu CHARAD ; get input pointer
1837 ldx CURLIN ; get line number
1838 lda #0xa6 ; flag for GOSUB frame
1839 pshs u,x,a ; set stack frame
1840 LAE9F bsr LAEA4 ; do "GOTO"
1841 jmp LAD9E ; go back to main loop
1842 ; Actual GOTO is here
1843 LAEA4 jsr GETCCH ; get current input
1844 jsr LAF67 ; convert number to binary
1845 bsr LAEEB ; move input pointer to end of statement
1846 leax 1,x ; point to start of next line
1847 ldd BINVAL ; get desired line number
1848 cmpd CURLIN ; is it beyond here?
1849 bhi LAEB6 ; brif so
1850 ldx TXTTAB ; start search at beginning of program
1851 LAEB6 jsr LAD05 ; find line number
1852 bcs LAED2 ; brif not found
1853 LAEBB leax -1,x ; move to just before start of line
1854 stx CHARAD ; reset input pointer
1855 LAEBF rts
1856 ; RETURN command
1857 RETURN bne LAEBF ; exit if argument given
1858 lda #0xff ; set VARDES to an illegal value so we ignore FOR frames
1859 sta VARDES
1860 jsr LABF9 ; look for a GOSUB frame
1861 tfr x,s ; reset stack
1862 cmpa #0xa6-0x80 ; is it a GOSUB frame?
1863 beq LAEDA ; brif so
1864 ldb #2*2 ; code for RETURN without GOSUB
1865 skip2
1866 LAED2 ldb #7*2 ; code for undefined line number
1867 jmp LAC46 ; raise error
1868 LAED7 jmp LB277 ; raise syntax error
1869 LAEDA puls a,x,u ; get back saved line number and input pointer
1870 stx CURLIN ; reset line number
1871 stu CHARAD ; reset input pointer
1872 ; DATA command
1873 DATA bsr LAEE8 ; move input pointer to end of statement
1874 skip2
1875 ; REM command (also ELSE)
1876 REM bsr LAEEB ; move input pointer to end of line
1877 stx CHARAD ; save new input pointer
1878 LAEE7 rts
1879 ; Return end of statement (LAEE8) or line (AEEB) in X
1880 LAEE8 ldb #': ; colon is statement terminator
1881 skip1lda
1882 LAEEB clrb ; make main terminator NUL
1883 stb CHARAC ; save terminator
1884 clrb ; end of line - always terminates
1885 ldx CHARAD ; get input pointer
1886 LAEF1 tfr b,a ; save secondary terminator
1887 ldb CHARAC ; get main terminator
1888 sta CHARAC ; save secondary
1889 LAEF7 lda ,x ; get input character
1890 beq LAEE7 ; brif end of line
1891 pshs b ; save terminator
1892 cmpa ,s+ ; does it match?
1893 beq LAEE7 ; brif so - bail
1894 leax 1,x ; move pointer ahead
1895 cmpa #'" ; start of string?
1896 beq LAEF1 ; brif so
1897 inca ; functon token?
1898 bne LAF0C ; brif not
1899 leax 1,x ; skip second part of function token
1900 LAF0C cmpa #0x85+1 ; IF?
1901 bne LAEF7 ; brif not
1902 inc IFCTR ; bump "IF" count
1903 bra LAEF7 ; get check another input character
1904 ; IF command
1905 IFTOK jsr LB141 ; evaluate condition
1906 jsr GETCCH ; find out what's after the conditin
1907 cmpa #0x81 ; GO?
1908 beq LAF22 ; treat same as THEN
1909 ldb #0xa7 ; make sure we have a THEN
1910 jsr LB26F
1911 LAF22 lda FP0EXP ; get true/false (false is 0)
1912 bne LAF39 ; brif condition true
1913 clr IFCTR ; reset IF counter
1914 LAF28 bsr DATA ; skip over statement
1915 tsta ; end of line?
1916 beq LAEE7 ; brif so
1917 jsr GETNCH ; get start of this statement
1918 cmpa #0x84 ; ELSE?
1919 bne LAF28 ; brif not
1920 dec IFCTR ; is it a matching ELSE?
1921 bpl LAF28 ; brif not - keep looking
1922 jsr GETNCH ; eat the ELSE
1923 LAF39 jsr GETCCH ; get current input
1924 lbcs LAEA4 ; brif numeric - to a GOTO
1925 jmp LADC6 ; let main loop interpret the next command
1926 ; ON command
1927 ON jsr LB70B ; evaluate index expression
1928 LAF45 ldb #0x81 ; make sure we have "GO"
1929 jsr LB26F
1930 pshs a ; save TO/SUB
1931 cmpa #0xa6 ; SUB?
1932 beq LAF54 ; brif so
1933 cmpa #0xa5 ; TO?
1934 LAF52 bne LAED7 ; brif not
1935 LAF54 dec FPA0+3 ; are we at the right index?
1936 bne LAF5D ; brif not
1937 puls b ; get TO/SUB token
1938 jmp LAE88 ; go do GOTO or GOSUB
1939 LAF5D jsr GETNCH ; munch a character
1940 bsr LAF67 ; parse line number
1941 cmpa #', ; is there another line following?
1942 beq LAF54 ; brif so - see if we're there yet
1943 puls b,pc ; clean up TO/SUB token and return - we fell through
1944 ; Parse a line number
1945 LAF67 ldx ZERO ; initialize line number accumulator to 0
1946 stx BINVAL
1947 LAF6B bcc LAFCE ; brif not numeric
1948 suba #'0 ; adjust to actual value of digit
1949 sta CHARAC ; save digit
1950 ldd BINVAL ; get accumulated number
1951 cmpa #24 ; will this overflow?
1952 bhi LAF52 ; brif so - raise syntax error
1953 aslb ; times 2
1954 rola
1955 aslb ; times 4
1956 rola
1957 addd BINVAL ; times 5
1958 aslb ; times 10
1959 rola
1960 addb CHARAC ; add in digit
1961 adca #0
1962 std BINVAL ; save new accumulated number
1963 jsr GETNCH ; fetch next character
1964 bra LAF6B ; process next digit
1965 ; LET command (the LET keyword requires Extended Basic)
1966 LET jsr LB357 ; evaluate destination variable
1967 stx VARDES ; save descriptor pointer
1968 ldb #0xb3 ; make sure we have =
1969 jsr LB26F
1970 lda VALTYP ; get destination variable type
1971 pshs a ; save it for later
1972 jsr LB156 ; evaluate the expression to assign
1973 puls a ; get back original variable type
1974 rora ; put type in C
1975 jsr LB148 ; make sure the current result matches the type
1976 lbeq LBC33 ; bri fnumeric - copy FPA0 to variable
1977 LAFA4 ldx FPA0+2 ; point to descriptor of replacement string
1978 ldd FRETOP ; get bottom of string space
1979 cmpd 2,x ; is the string already in string space?
1980 bhs LAFBE ; brif so
1981 cmpx VARTAB ; is the descriptor in variable space?
1982 blo LAFBE ; brif not
1983 LAFB1 ldb ,x ; get length of string
1984 jsr LB50D ; allocate space for this string
1985 ldx V4D ; get descriptor pointer back
1986 jsr LB643 ; copy string into string space
1987 ldx #STRDES ; point to temporary string descriptor
1988 LAFBE stx V4D ; save descriptor pointer
1989 jsr LB675 ; remove string from string stack if appropriate
1990 ldu V4D ; get back replacement descriptor
1991 ldx VARDES ; get target descriptor
1992 pulu a,b,y ; get string length (A) and data pointer (Y)
1993 sta ,x ; save new length
1994 sty 2,x ; save new pointer
1995 LAFCE rts
1996 ; READ and INPUT commands.
1997 LAFCF fcc '?REDO' ; The ?REDO message
1998 fcb 0x0d,0x00
1999 LAFD6 ldb #2*17 ; bad file data code
2000 tst DEVNUM ; are we reading from the keyboard?
2001 beq LAFDF ; brif so
2002 LAFDC jmp LAC46 ; raise the error
2003 LAFDF lda INPFLG ; are we doing INPUT?
2004 beq LAFEA ; brif so
2005 ldx DATTXT ; get line number where the DATA statement happened
2006 stx CURLIN ; set current line number to that so can report the correct location
2007 jmp LB277 ; raise a syntax error on bad data
2008 LAFEA ldx #LAFCF-1 ; show the ?REDO if we're doing INPUT
2009 jsr LB99C
2010 ldx TINPTR ;* reset input pointer to start of statement (this will cause the
2011 stx CHARAD ;* INPUT statement to be re-executed
2012 rts
2013 INPUT ldb #11*2 ; code for illegal direct statement
2014 ldx CURLIN ; are we in immediate mode?
2015 leax 1,x
2016 beq LAFDC ; brif so - raise ID error
2017 bsr LB002 ; go do the INPUT thing
2018 clr DEVNUM ; reset device to screen/keyboard
2019 rts
2020 LB002 cmpa #'# ; is there a device number?
2021 bne LB00F ; brif not
2022 jsr LA5A5 ; parse device number
2023 jsr LA3ED ; make sure it's valid for input
2024 jsr LB26D ; make sure we have a comma after the device number
2025 LB00F cmpa #'" ; is there a prompt string?
2026 bne LB01E ; brif not
2027 jsr LB244 ; parse the prompt string
2028 ldb #'; ; make sure we have a semicolon after the prompt
2029 jsr LB26F
2030 jsr LB99F ; print the prompt
2031 LB01E ldx #LINBUF ; point to line input buffer
2032 clr ,x ; NUL first byte to indicate no data
2033 tst DEVNUM ; is it keyboard input?
2034 bne LB049 ; brif not
2035 bsr LB02F ; read a line from the keyboard
2036 ldb #', ; put a comma at the start of the buffer
2037 stb ,x
2038 bra LB049 ; go process some input
2039 LB02F jsr LB9AF ; send a ?
2040 jsr LB9AC ; send a space
2041 LB035 jsr LA390 ; read input from the keyboard
2042 bcc LB03F ; brif not BREAK
2043 leas 4,s ; clean up stack
2044 LB03C jmp LAE11 ; go process BREAK
2045 LB03F ldb #2*23 ; input past end of file error code
2046 tst CINBFL ; was it EOF?
2047 bne LAFDC ; brif so - raise the error
2048 rts
2049 READ ldx DATPTR ; fetch current DATA pointer
2050 skip1lda ; set A to nonzero (for READ)
2051 LB049 clra ; set A to zero (for INPUT)
2052 sta INPFLG ; record whether we're doing READ or INPUT
2053 stx DATTMP ; save current input location
2054 LB04E jsr LB357 ; evaluate a variable (destination of data)
2055 stx VARDES ; save descriptor
2056 ldx CHARAD ; save interpreter input pointer
2057 stx BINVAL
2058 ldx DATTMP ; get data pointer
2059 lda ,x ; is there anything to read?
2060 bne LB069 ; brif so
2061 lda INPFLG ; is it INPUT?
2062 bne LB0B9 ; brif not
2063 jsr RVEC10 ; do the RAM hook dance
2064 jsr LB9AF ; send a ? (so subsequent lines get ??)
2065 bsr LB02F ; go read an input line
2066 LB069 stx CHARAD ; save data pointer
2067 jsr GETNCH ; fetch next data character
2068 ldb VALTYP ; do we want a number?
2069 beq LB098 ; brif so
2070 ldx CHARAD ; get input pointer
2071 sta CHARAC ; save initial character as the delimiter
2072 cmpa #'" ; do we have a string delimiter?
2073 beq LB08B ; brif so - use " as both delimiters
2074 leax -1,x ; back up input if we don't have a delimiter
2075 clra ; set delimiter to NUL (end of line)
2076 sta CHARAC
2077 jsr LA35F ; set up print parameters
2078 tst PRTDEV ; is it a file type device?
2079 bne LB08B ; brif so - use two NULs
2080 lda #': ; use colon as one delimiter
2081 sta CHARAC
2082 lda #', ; and use comma as the other
2083 LB08B sta ENDCHR ; save second terminator
2084 jsr LB51E ; parse out the string
2085 jsr LB249 ; move input pointer past the string
2086 jsr LAFA4 ; assign the string to the variable
2087 bra LB09E ; go see if there's more to read
2088 LB098 jsr LBD12 ; parse a numeric string
2089 jsr LBC33 ; assign the numbe to the variable
2090 LB09E jsr GETCCH ; get current input character
2091 beq LB0A8 ; brif end of line
2092 cmpa #', ; check for comma
2093 lbne LAFD6 ; brif not - we have bad data
2094 LB0A8 ldx CHARAD ; get current data pointer
2095 stx DATTMP ; save the data pointer
2096 ldx BINVAL ; restore the interpreter input pointer
2097 stx CHARAD
2098 jsr GETCCH ; get current input from program
2099 beq LB0D5 ; brif end of statement
2100 jsr LB26D ; make sure there's a comma between variables
2101 bra LB04E ; go read another item
2102 LB0B9 stx CHARAD ; reset input pointer
2103 jsr LAEE8 ; search for end of statement
2104 leax 1,x ; move past end of statement
2105 tsta ; was it end of line?
2106 bne LB0CD ; brif not
2107 ldb #2*3 ; code for out of data
2108 ldu ,x++ ; get pointer to next line
2109 beq LB10A ; brif end of program - raise OD error
2110 ldd ,x++ ; get line number
2111 std DATTXT ; record it for raising errors in DATA statements
2112 LB0CD lda ,x ; do we have a DATA statement?
2113 cmpa #0x86
2114 bne LB0B9 ; brif not - keep scanning
2115 bra LB069 ; go process the input
2116 LB0D5 ldx DATTMP ; get data pointer
2117 ldb INPFLG ; were we doing READ?
2118 lbne LADE8 ; brif so - save DATA pointer
2119 lda ,x ; is there something after the input in the input buffer?
2120 beq LB0E7 ; brif not - we consumed everything
2121 ldx #LB0E8-1 ; print the ?EXTRA IGNORED message
2122 jmp LB99C
2123 LB0E7 rts
2124 LB0E8 fcc '?EXTRA IGNORED'
2125 fcb 0x0d,0x00
2126 ; NEXT command
2127 NEXT bne LB0FE ; brif argument given
2128 ldx ZERO ; set to NULL descriptor pointer
2129 bra LB101 ; go process "any index will do"
2130 LB0FE jsr LB357 ; evaluate the variable
2131 LB101 stx VARDES ; save the index we're looking for
2132 jsr LABF9 ; search the stack for the matching frame
2133 beq LB10C ; brif we found a matching frame
2134 ldb #0 ; code for NEXT without FOR
2135 LB10A bra LB153 ; raise the error
2136 LB10C tfr x,s ; reset the stack to the start of the stack frame
2137 leax 3,x ; point to the STEP value
2138 jsr LBC14 ; copy the value to FPA0
2139 lda 8,s ; get step direction
2140 sta FP0SGN ; save as sign of FPA0
2141 ldx VARDES ; point to index variable
2142 jsr LB9C2 ; add (X) to FPA0 (steps the index)
2143 jsr LBC33 ; save new value to the index
2144 leax 9,s ; point to terminal condition
2145 jsr LBC96 ; compare the new index value with the terminal
2146 subb 8,s ; set B=0 if we hit the terminal (or passed it with nonzero step)
2147 beq LB134 ; brif loop complete
2148 ldx 14,s ; restore line number and input pointer to start of loop
2149 stx CURLIN
2150 ldx 16,s
2151 stx CHARAD
2152 LB131 jmp LAD9E ; return to interpretation loop
2153 LB134 leas 18,s ; remove the frame from the stack
2154 jsr GETCCH ; get character after the index
2155 cmpa #', ; do we have more indexes?
2156 bne LB131 ; brif not
2157 jsr GETNCH ; munch the comma
2158 bsr LB0FE ; go process another value
2159 ; NOTE: despite the BSR on the preceding line, execution of the NEXT command will not fall
2160 ; through this point, nor will the stack grow without bound. The BSR is required to make sure
2161 ; the stack is aligned properly for the stack search for the subsequent index variable.
2162 ;
2163 ; The following is the expression evaluation system. It has various entry points including for type
2164 ; checking. This really consists of two co-routines, one for evaluating operators and one for individual
2165 ; terms. However, it does some rather confusing stack operations so it's a bit difficult to follow
2166 ; just how some of this works.
2167 ;
2168 ; Evaluate numeric expression
2169 LB141 bsr LB156 ; evaluate an expression
2170 ; TM error if string
2171 LB143 andcc #0xfe ; clear C to indicate we want a number
2172 skip2keepc
2173 ; TM error if numeric
2174 LB146 orcc #1 ; set C to indicate we want a string
2175 ; TM error if: C = 1 and number, OR C = 0 and string
2176 LB148 tst VALTYP ; set flags on the current value to (doesn't change C)
2177 bcs LB14F ; brif we want a string
2178 bpl LB0E7 ; brif we have a number (we want a number)
2179 skip2
2180 LB14F bmi LB0E7 ; brif we have a string (we want a string)
2181 LB151 ldb #12*2 ; code for TM error
2182 LB153 jmp LAC46 ; raise the error
2183 ; The general expression evaluation entry point
2184 LB156 bsr LB1C6 ; back up input pointer to compensate for GETNCH below
2185 LB158 clra ; set operator precedence to 0 (no previous operator)
2186 skip2
2187 LB15A pshs b ; save relational operator flags
2188 pshs a ; save previous operator precedence
2189 ldb #1 ; make sure we aren't overflowing the stack
2190 jsr LAC33
2191 jsr LB223 ; go evaluate the first term
2192 LB166 clr TRELFL ; flag no relational operators seen
2193 LB168 jsr GETCCH ; get input character
2194 LB16A suba #0xb2 ; token for > (lowest relational operator)
2195 blo LB181 ; brif below relational operators
2196 cmpa #3 ; there are three relational operators, is it one?
2197 bhs LB181 ; brif not
2198 cmpa #1 ; set C if >
2199 rola ; shift C into bit 0 (4: <, 2: =, 1: >)
2200 eora TRELFL ; flip the bit for this operator
2201 cmpa TRELFL ; did the result get lower?
2202 blo LB1DF ; brif so - we have a duplicate so raise an error
2203 sta TRELFL ; save new operator flags
2204 jsr GETNCH ; munch the operator
2205 bra LB16A ; go see if we have another one
2206 LB181 ldb TRELFL ; do we have a relational comparison?
2207 bne LB1B8 ; brif so
2208 lbcc LB1F4 ; brif the token is above the relational operators
2209 adda #7 ; put operators starting at 0
2210 bhs LB1F4 ; brif we're above 0 - it's an operator, Jim
2211 adca VALTYP ; add carry, numeric flag, and modified token number
2212 lbeq LB60F ; brif we have string and A is + - do concatenation
2213 adca #-1 ; restore operator number
2214 pshs a ; save operator number
2215 asla ; times 2
2216 adda ,s+ ; and times 3 (3 bytes per entry)
2217 ldx #LAA51 ; point to operator pecedence and jump table
2218 leax a,x ; point to correct entry
2219 LB19F puls a ; get precedence of previous operation
2220 cmpa ,x ; is hit higher (or same) than the current one?
2221 bhs LB1FA ; brif so - we need to process that operator
2222 bsr LB143 ; TM error if we have a string
2223 LB1A7 pshs a ; save previous operation precedence
2224 bsr LB1D4 ; push operator handler address and FPA0 onto the stack
2225 ldx RELPTR ; get pointer to arithmetic/logical table entry for last operation
2226 puls a ; get back precedence
2227 bne LB1CE ; brif we had a relational operation
2228 tsta ; check precedence of previous operation
2229 lbeq LB220 ; brif end of expression
2230 bra LB203 ; go handle operation
2231 LB1B8 asl VALTYP ; get type of value to C
2232 rolb ; mix it in to bit 0 of relational flags
2233 bsr LB1C6 ; back up input pointer
2234 ldx #LB1CB ; point to relational operator precedence and handler
2235 stb TRELFL ; save relational comparison flags
2236 clr VALTYP ; result will be numeric
2237 bra LB19F ; to process the operation
2238 LB1C6 ldx CHARAD ; get input pointer
2239 jmp LAEBB ; back it up one and put it back
2240 LB1CB fcb 0x64 ; precedence of relational comparison
2241 fdb LB2F4 ; handler address for relational comparison
2242 LB1CE cmpa ,x ; is last done operation higher (or same) precedence?
2243 bhs LB203 ; brif so - go process it
2244 bra LB1A7 ; go push things on the stack and process this operation otherwise
2245 LB1D4 ldd 1,x ; get address of operatorroutine
2246 pshs d ; save it
2247 bsr LB1E2 ; push FPA0 onto the stack
2248 ldb TRELFL ; get back relational operator flags
2249 lbra LB15A ; go evaluate another operation
2250 LB1DF jmp LB277 ; raise a syntax error
2251 LB1E2 ldb FP0SGN ; get sign of FPA0
2252 lda ,x ; get precedence of this operation
2253 LB1E6 puls y ; get back original caller
2254 pshs b ; save sign
2255 LB1EA ldb FP0EXP ; get exponent
2256 ldx FPA0 ; get mantissa
2257 ldu FPA0+2
2258 pshs u,x,b ; stow FPA0 sign and mantissa
2259 jmp ,y ; return to caller
2260 LB1F4 ldx ZERO ; point to dummy value
2261 lda ,s+ ; get precedence of previous operation (and set flags)
2262 beq LB220 ; brif end of expression
2263 LB1FA cmpa #0x64 ; relational operation?
2264 beq LB201 ; brif so
2265 jsr LB143 ; type mismatch if string
2266 LB201 stx RELPTR ; save pointer to operator routine
2267 LB203 puls b ; get relational flags
2268 cmpa #0x5a ; NOT operation?
2269 beq LB222 ; brif so (it was unary)
2270 cmpa #0x7d ; unary negation?
2271 beq LB222 ; brif so
2272 lsrb ; shift value type flag out of relational flags
2273 stb RELFLG ; save relational operator flag
2274 puls a,x,u ; get FP value back
2275 sta FP1EXP ; set exponent and mantissa in FPA1
2276 stx FPA1
2277 stu FPA1+2
2278 puls b ; and the sign
2279 stb FP1SGN
2280 eorb FP0SGN ; set RESSGN if the two operand signs differ
2281 stb RESSGN
2282 LB220 ldb FP0EXP ; get exponent of FPA0
2283 LB222 rts ; return or transfer control to operator handler routine
2284 LB223 jsr RVEC15 ; do the RAM hook dance
2285 clr VALTYP ; set type to numeric
2286 LB228 jsr GETNCH ; get first character in the term
2287 bcc LB22F ; brif not numeric
2288 LB22C jmp LBD12 ; parse a number (and return)
2289 LB22F jsr LB3A2 ; set carry if not alpha
2290 bcc LB284 ; brif alpha character (variable)
2291 cmpa #'. ; decimal point?
2292 beq LB22C ; brif so - evaluate number
2293 cmpa #0xac ; minus?
2294 beq LB27C ; brif so - process unary negation
2295 cmpa #0xab ; plus?
2296 beq LB228 ; brif so - ignore unary "posation"
2297 cmpa #'" ; string delimiter?
2298 bne LB24E ; brif not
2299 LB244 ldx CHARAD ; get input pointer
2300 jsr LB518 ; go parse the string
2301 LB249 ldx COEFPT ; get address of end of string
2302 stx CHARAD ; move input pointer past string
2303 rts
2304 LB24E cmpa #0xa8 ; NOT?
2305 bne LB25F ; brif not
2306 lda #0x5a ; precedence of unary NOT
2307 jsr LB15A ; process the operand of NOT
2308 jsr INTCNV ; convert to integer in D
2309 coma ; do a bitwise complement
2310 comb
2311 jmp GIVABF ; resturn the result
2312 LB25F inca ; is it a function token?
2313 beq LB290 ; brif so
2314 LB262 bsr LB26A ; only other legal thing must be a (expr)
2315 jsr LB156 ; evaluate parentheticized expression
2316 LB267 ldb #') ; force a )
2317 skip2
2318 LB26A ldb #'( ; force a (
2319 skip2
2320 LB26D ldb #', ; force a ,
2321 LB26F cmpb [CHARAD] ; does character match?
2322 bne LB277 ; brif not
2323 jmp GETNCH ; each the character and return the next
2324 LB277 ldb #2*1 ; raise syntax error
2325 jmp LAC46
2326 LB27C lda #0x7d ; unary negation precedence
2327 jsr LB15A ; evaluate argument
2328 jmp LBEE9 ; flip sign of FPA0 and return
2329 LB284 jsr LB357 ; evaluate variable
2330 LB287 stx FPA0+2 ; save descriptor address in FPA0
2331 lda VALTYP ; test variable type
2332 bne LB222 ; brif string - we're done
2333 jmp LBC14 ; copy FP number from (X) into FPA0
2334 LB290 jsr GETNCH ; get the actual token number
2335 tfr a,b ; save it (for offsetting X)
2336 lslb ; two bytes per jump table entry (and lose high bit)
2337 jsr GETNCH ; eat the token byte
2338 cmpb #2*19 ; is it a valid token for Color Basic?
2339 bls LB29F ; brif so
2340 jmp [COMVEC+18] ; transfer control to Extended Basic if not
2341 LB29F pshs b ; save jump table offset
2342 cmpb #2*14 ; does it expect a numeric argument?
2343 blo LB2C7 ; brif so
2344 cmpb #2*18 ; does it need no arguments?
2345 bhs LB2C9 ; brif so
2346 bsr LB26A ; force a (
2347 lda ,s ; get token value
2348 cmpa #2*17 ; is it POINT?
2349 bhs LB2C9 ; brif so
2350 jsr LB156 ; evaluate first argument string
2351 bsr LB26D ; force a comma
2352 jsr LB146 ; TM error if string
2353 puls a ; get token value
2354 ldu FPA0+2 ; get string descriptor
2355 pshs u,a ; now we save the first string argument and the token value
2356 jsr LB70B ; evaluate first numeric argument
2357 puls a ; get back token value
2358 pshs b,a ; save second argument and token value
2359 fcb 0x8e ; opcode of LDX immediate (skips two bytes)
2360 LB2C7 bsr LB262 ; force a (
2361 LB2C9 puls b ; get offset
2362 ldx COMVEC+8 ; get jump table pointer
2363 abx ; add offset into table
2364 jsr [,x] ; go process function
2365 jmp LB143 ; make sure result is numeric
2366 ; operator OR
2367 LB2D4 skip1lda ; set flag to nonzero to signal OR
2368 ; operator AND
2369 LB2D5 clra ; set flag to zero to signal AND
2370 sta TMPLOC ; save AND/OR flag
2371 jsr INTCNV ; convert second argument to intenger
2372 std CHARAC ; save it
2373 jsr LBC4A ; move first argument to FPA0
2374 jsr INTCNV ; convert first argument to integer
2375 tst TMPLOC ; is it AND or OR?
2376 bne LB2ED ; brif OR
2377 anda CHARAC ; do the bitwise AND
2378 andb ENDCHR
2379 bra LB2F1 ; finish up
2380 LB2ED ora CHARAC ; do the bitwise OR
2381 orb ENDCHR
2382 LB2F1 jmp GIVABF ; return integer result
2383 ; relational comparision operators
2384 LB2F4 jsr LB148 ; TM error if type mismatch
2385 BNE LB309 ; brif we have a string comparison
2386 lda FP1SGN ; pack FPA1
2387 ora #0x7f
2388 anda FPA1
2389 sta FPA1
2390 ldx #FP1EXP ; point to packed FPA1
2391 jsr LBC96 ; compare FPA0 to FPA1
2392 bra LB33F ; handle truth comparison
2393 LB309 clr VALTYP ; the result of a comparison is always a number
2394 dec TRELFL ; remove the string flag from the comparison data
2395 jsr LB657 ; get string details for second argument
2396 stb STRDES ; save them in the temporary string descriptor
2397 stx STRDES+2
2398 ldx FPA1+2 ; get pointer to first argument descriptor
2399 jsr LB659 ; get string details for second argument
2400 lda STRDES ; get length of second argument
2401 pshs b ; save length of first argument
2402 suba ,s+ ; now A is the difference in string lengths
2403 beq LB328 ; brif string lengths are equal
2404 lda #1 ; flag for second argument is longer than first
2405 bcc LB328 ; brif second string is longer than first
2406 ldb STRDES ; get length of second string (shorter)
2407 nega ; invert default comparison result
2408 LB328 sta FP0SGN ; save default truth flag
2409 ldu STRDES+2 ; get pointer to start of second string
2410 incb ; compensate for DECB
2411 LB32D decb ; have we compared everything?
2412 bne LB334 ; brif not
2413 ldb FP0SGN ; get default truth value
2414 bra LB33F ; decide comparison truth
2415 LB334 lda ,x+ ; get byte from first argument
2416 cmpa ,u+ ; compare with second argument
2417 beq LB32D ; brif equal - keep comparing
2418 ldb #0xff ; negative if first string is > second
2419 bcc LB33F ; brif string A > string B
2420 negb ; invert result
2421 LB33F addb #1 ; convert to 0,1,2
2422 rolb ; shift left - now it's 4,2,1 for <, =, >
2423 andb RELFLG ; keep only the truth we care about
2424 beq LB348 ; brif no matching bits - it's false
2425 ldb #0xff ; set true
2426 LB348 jmp LBC7C ; convert result to FP and return it
2427 ; DIM command
2428 LB34B jsr LB26D ; make sure there's a comma between variables
2429 DIM ldb #1 ; flag that we're dimensioning
2430 bsr LB35A ; go allocate the variable
2431 jsr GETCCH ; are we done?
2432 bne LB34B ; brif not
2433 rts
2434 ; This routine parses a variable. For scalars, it will return a NULL string or 0 value number
2435 ; if it is called from "evaluate term". Otherwise, it allocates the variable. For arrays, it will
2436 ; allocate a default sized array if dimensioning is not underway and then attempt to look up
2437 ; the requested coordinates in that array. Otherwise, it will allocate an array based on the
2438 ; specified dimension values.
2439 LB357 clrb ; flag that we're not setting up an array
2440 jsr GETCCH
2441 LB35A stb DIMFLG ; save dimensioning flag
2442 sta VARNAM ; save first character of variable name
2443 jsr GETCCH ; get input character (why? we already have it)
2444 bsr LB3A2 ; set carry if not alpha
2445 lbcs LB277 ; brif our variable doesn't start with a letter
2446 clrb ; default second variable character to NUL
2447 stb VALTYP ; set value type to numeric
2448 jsr GETNCH ; get second character
2449 bcs LB371 ; brif numeric - numbers are allowed
2450 bsr LB3A2 ; set carry if not alpha
2451 bcs LB37B ; brif not alpha
2452 LB371 tfr a,b ; save set second character of variable name
2453 LB373 jsr GETNCH ; get an input character
2454 bcs LB373 ; brif numeric - still in variable name
2455 bsr LB3A2 ; set carry if not alpha
2456 bcc LB373 ; brif alpha - still in variable name
2457 LB37B cmpa #'$ ; do we have the string sigil?
2458 bne LB385 ; brif not
2459 com VALTYP ; set value type to string
2460 addb #0x80 ; set bit 7 of second variable character to indicate string
2461 jsr GETNCH ; eat the sigil
2462 LB385 stb VARNAM+1 ; save second variable name character
2463 ora ARYDIS ; merge array disable flag (will set bit 7 of input character if no arrays)
2464 suba #'( ; do we have a subscript?
2465 lbeq LB404 ; brif so
2466 clr ARYDIS ; disable the array disable flag - it's single use
2467 ldx VARTAB ; point to the start of the variable table
2468 ldd VARNAM ; get variable name
2469 LB395 cmpx ARYTAB ; are we at the top of the variable table?
2470 beq LB3AB ; brif so
2471 cmpd ,x++ ; does the variable name match (and move pointer to variable data)
2472 beq LB3DC ; brif so
2473 leax 5,x ; move to next table entry
2474 bra LB395 ; see if we have a match
2475 ; Set carry if not upper case alpha
2476 LB3A2 cmpa #'A ; set C if less than A
2477 bcs LB3AA ; brif less than A
2478 suba #'Z+1 ; set C if greater than Z
2479 suba #-('Z+1)
2480 LB3AA rts
2481 LB3AB ldx #ZERO ; point to empty location (NULL/0 value)
2482 ldu ,s ; get caller address
2483 cmpu #LB287 ; coming from "evaluate term"?
2484 beq LB3DE ; brif so - don't allocate
2485 ldd ARYEND ; get end of arrays
2486 std V43 ; save as top of source block
2487 addd #7 ; 7 bytes per scalar entry
2488 std V41 ; save as top of destination block
2489 ldx ARYTAB ; get bottom of arrays
2490 stx V47 ; save as bottom of source block
2491 jsr LAC1E ; move the arrays up to make a hole
2492 ldx V41 ; get new top of arrays
2493 stx ARYEND ; set new end of arrays
2494 ldx V45 ; get bottom of destination block
2495 stx ARYTAB ; set as new start of arrays
2496 ldx V47 ; get old end of variables
2497 ldd VARNAM ; get name of variable
2498 std ,x++ ; set variable name and advance X to the value
2499 clra ; zero out the variable value
2500 clrb
2501 std ,x
2502 std 2,x
2503 sta 4,x
2504 LB3DC stx VARPTR ; save descriptor address of return value
2505 LB3DE rts
2506 ; Various integer conversion routines
2507 LB3DF fcb 0x90,0x80,0x00,0x00,0x00 ; FP constant -32768
2508 LB3E4 jsr GETNCH ; fetch input character
2509 LB3E6 jsr LB141 ; evaluate numeric expression
2510 LB3E9 lda FP0SGN ; get sign of value
2511 bmi LB44A ; brif negative (raise FC error)
2512 INTCNV lda FP0EXP ; get exponent
2513 cmpa #0x90 ; is it within the range for a 16 bit integer?
2514 blo LB3FE ; brif smaller than 32768
2515 ldx #LB3DF ; point to -32678 constant
2516 jsr LBC96 ; is FPA0 equal to -32768?
2517 bne LB44A ; brif not - magnitude is too far negative
2518 LB3FE jsr LBCC8 ; move binary point to the right of FPA0 and correct sign
2519 ldd FPA0+2 ; get the resulting integer
2520 rts
2521 LB404 ldb DIMFLG ; get dimensioning flag
2522 lda VALTYP ; get type of variable
2523 pshs b,a ; save them (to avoid issues while evaluating dimension values)
2524 clrb ; reset dimension counter
2525 LB40A ldx VARNAM ; get variable name
2526 pshs x,b ; save dimension counter and variable name
2527 bsr LB3E4 ; evaluate a dimension value (and skip either ( or ,)
2528 puls b,x,y ; get variable name, dimension counter, and dimensioning/type flag
2529 stx VARNAM ; restore variable name
2530 ldu FPA0+2 ; get dimension size/index
2531 pshs u,y ; save dimension size and dimensioning/type flag
2532 incb ; bump dimension counter
2533 jsr GETCCH ; get what's after the dimension count
2534 cmpa #', ; do we have another dimension?
2535 beq LB40A ; brif so - parse it
2536 stb TMPLOC ; save dimension counter
2537 jsr LB267 ; make sure we have a )
2538 puls a,b ; get back variable type and dimensioning flag
2539 sta VALTYP ; restore variable type
2540 stb DIMFLG ; restore dimensioning flag
2541 ldx ARYTAB ; get start of arrays
2542 LB42A cmpx ARYEND ; are we at the end of the array table
2543 beq LB44F ; brif so
2544 ldd VARNAM ; get variable name
2545 cmpd ,x ; does it match?
2546 beq LB43B ; brif so
2547 ldd 2,x ; get length of this array
2548 leax d,x ; move to next array
2549 bra LB42A ; go check another entry
2550 LB43B ldb #2*9 ; code for redimensioned array error
2551 lda DIMFLG ; are we dimensioning?
2552 bne LB44C ; brif so - raise error
2553 ldb TMPLOC ; get number of dimensions given
2554 cmpb 4,x ; does it match?
2555 beq LB4A0 ; brif so
2556 LB447 ldb #8*2 ; raise "bad subscript"
2557 skip2
2558 LB44A ldb #4*2 ; raise "illegal function call"
2559 LB44C jmp LAC46 ; raise error
2560 LB44F ldd #5 ; 5 bytes per array entry
2561 std COEFPT ; initialize array size to entry size
2562 ldd VARNAM ; get variable name
2563 std ,x ; set array name
2564 ldb TMPLOC ; get dimension count
2565 stb 4,x ; set dimension count
2566 jsr LAC33 ; make sure we haven't overflowed memory
2567 stx V41 ; save array descriptor address
2568 LB461 ldb #11 ; default dimension value (zero-based, gives max index of 10)
2569 clra ; zero extend (??? why not LDD above?)
2570 tst DIMFLG ; are we dimensioning?
2571 beq LB46D ; brif not
2572 puls a,b ; get dimension size
2573 addd #1 ; account for zero based indexing
2574 LB46D std 5,x ; save dimension size
2575 bsr LB4CE ; multiply by accumulated array size
2576 std COEFPT ; save new array size
2577 leax 2,x ; move to next dimension
2578 dec TMPLOC ; have we done all dimensions?
2579 bne LB461 ; brif not
2580 stx TEMPTR ; save end of array descriptor (minus 5)
2581 addd TEMPTR ; add total size of array to address of descriptor
2582 lbcs LAC44 ; brif it overflows memory
2583 tfr d,x ; save end of array for later
2584 jsr LAC37 ; does array fit in memory?
2585 subd #STKBUF-5 ; subtract out the "stack fudge factor" but add 5 to the result
2586 std ARYEND ; save new end of arrays
2587 clra ; set up for clearing
2588 LB48C leax -1,x ; move back one
2589 sta 5,x ; blank out a byte in the array data
2590 cmpx TEMPTR ; have we reached the array header?
2591 bne LB48C ; brif not
2592 ldx V41 ; get address of start of descriptor
2593 lda ARYEND ; get MSB of end of array back (B still has LSB)
2594 subd V41 ; subtract start of descriptor
2595 std 2,x ; save length of array in array header
2596 lda DIMFLG ; are we dimensioning?
2597 bne LB4CD ; brif so - we're done
2598 LB4A0 ldb 4,x ; get number of dimensions
2599 stb TMPLOC ; initialize counter
2600 clra ; initialize accumulated offset
2601 clrb
2602 LB4A6 std COEFPT ; save accumulated offset
2603 puls a,b ; get desired index
2604 std FPA0+2 ; save it
2605 cmpd 5,x ; is it in range for this dimension?
2606 bhs LB4EB ; brif not
2607 ldu COEFPT ; get accumulated offset
2608 beq LB4B9 ; brif first dimension
2609 bsr LB4CE ; multiply accumulated offset by dimension length
2610 addd FPA0+2 ; add in offset into this dimension
2611 LB4B9 leax 2,x ; move to next dimension in header
2612 dec TMPLOC ; done all dimensions?
2613 bne LB4A6 ; brif not
2614 std ,--s ; save D for multiply by 5 (should be pshs d)
2615 aslb ; times 2
2616 rola
2617 aslb ; times 4
2618 rola
2619 addd ,s++ ; times 5
2620 leax d,x ; add in offset from start of array data
2621 leax 5,x ; offset to end of header
2622 stx VARPTR ; save pointer to element data
2623 LB4CD rts
2624 ; multiply 16 bit number at 5,x by the 16 bit number in COEFPT; return result in D; BS error if carry
2625 LB4CE lda #16 ; 16 shifts to do a multiply
2626 sta V45 ; save shift counter
2627 ldd 5,x ; get multiplier
2628 std BOTSTK ; save it
2629 clra ; zero out product
2630 clrb
2631 LB4D8 aslb ; shift product left
2632 rola
2633 bcs LB4EB ; brif we have a carry
2634 asl COEFPT+1 ; shift other factor left
2635 rol COEFPT
2636 bcc LB4E6 ; brif no carry - this bit position is 0
2637 addd BOTSTK ; add in multiplier at this bit position
2638 bcs LB4EB ; brif carry - do an error
2639 LB4E6 dec V45 ; have we done all 16 bits?
2640 bne LB4D8 ; brif not
2641 rts
2642 LB4EB jmp LB447 ; raise a BS error
2643 ; MEM function
2644 ; BUG: this doesn't account for the STKBUF fudge factor used for memory availability checks
2645 MEM tfr s,d ; get stack pointer where we can do math
2646 subd ARYEND ; calculate number of bytes between the stack and the top of arrays
2647 skip1 ; return result
2648 ; Convert unsigned value in B to FP
2649 LB4F3 clra ; zero extend
2650 ; Convert signed value in D to FP
2651 GIVABF clr VALTYP ; set value type to numeric
2652 std FPA0 ; save value in FPA0
2653 ldb #0x90 ; exponent for top two bytes to be an integer
2654 jmp LBC82 ; finish conversion to integer
2655 ; STR$ function
2656 STR jsr LB143 ; make sure we have a number
2657 ldu #STRBUF+2 ; convert FP number to string in temporary string buffer
2658 jsr LBDDC
2659 leas 2,s ; don't return to the function evaluator (which will do a numeric type check)
2660 ldx #STRBUF+1 ; point to number string
2661 bra LB518 ; to stash the string in string space and return to the "evaluate term" caller
2662 ; Reserve B bytes of string space. Return start in X and FRESPC
2663 LB50D stx V4D ; save X somewhere in case the caller needs it
2664 LB50F bsr LB56D ; allocate string space
2665 LB511 stx STRDES+2 ; save pointer to allocated space in the temporary descriptor
2666 stb STRDES ; save length in the temporary descriptor
2667 rts
2668 LB516 leax -1,x ; move pointer back one (to compensate for the increment below)
2669 ; Scan from X until either NUL or one of the string terminators is found
2670 LB518 lda #'" ; set terminator to be string delimiter
2671 LB51A sta CHARAC ; set both delimiters
2672 sta ENDCHR
2673 LB51E leax 1,x ; move to next character
2674 stx RESSGN ; save start of string
2675 stx STRDES+2 ; save start of string in the temporary string descriptor
2676 ldb #-1 ; initialize length counter to -1 (compensate for initial INCB)
2677 LB526 incb ; bump string length
2678 lda ,x+ ; get character from string
2679 beq LB537 ; brif end of line
2680 cmpa CHARAC ; is it delimiter #1?
2681 beq LB533 ; brif so
2682 cmpa ENDCHR ; is it delimiter #2?
2683 bne LB526 ; brif not - keep scanning
2684 LB533 cmpa #'" ; string delimiter?
2685 beq LB539 ; brif so - don't move pointer back
2686 LB537 leax -1,x ; move pointer back (so we don't consume the delimiter)
2687 LB539 stx COEFPT ; save end of string address
2688 stb STRDES ; save string length
2689 ldu RESSGN ; get start of string
2690 cmpu #STRBUF+2 ; is it at the start of the string buffer?
2691 bhi LB54C ; brif so - don't copy it to string space
2692 bsr LB50D ; allocate string space
2693 ldx RESSGN ; point to beginning of the string
2694 jsr LB645 ; copy string data (B bytes) from (X) to (FRESPC)
2695 ; Put temporary string descriptor on the string stack
2696 LB54C ldx TEMPPT ; get top of string stack
2697 cmpx #CFNBUF ; is the string stack full?
2698 bne LB558 ; brif not
2699 ldb #15*2 ; code for "string formula too complex"
2700 LB555 jmp LAC46 ; raise error
2701 LB558 lda STRDES ; get string length
2702 sta 0,x ; save it in the string stack descriptor
2703 ldd STRDES+2 ; get string data pointer
2704 std 2,x ; save in string stack descriptor
2705 lda #0xff ; set value type to string
2706 sta VALTYP
2707 stx LASTPT ; set pointer to last used entry on the string stack
2708 stx FPA0+2 ; set pointer to descriptor in the current evaluation value
2709 leax 5,x ; advance string stack pointer
2710 stx TEMPPT
2711 rts
2712 ; Reserve B bytes in string space. If there isn't enough space, try compacting string space and
2713 ; then try the allocation again. If it still fails, raise OS error.
2714 LB56D clr GARBFL ; flag that compaction not yet done
2715 LB56F clra ; zero extend the length
2716 pshs d ; save requested string length
2717 ldd STRTAB ; get current bottom of strings
2718 subd ,s+ ; calculate new bottom of strings and remove zero extension
2719 cmpd FRETOP ; does the string fit?
2720 blo LB585 ; brif not - try compaction
2721 std STRTAB ; save new bottom of strings
2722 ldx STRTAB ; get bottom of strings
2723 leax 1,x ; now X points to the real start of the allocated space
2724 stx FRESPC ; save the string pointer
2725 puls b,pc ; restore length and return
2726 LB585 ldb #2*13 ; code for out of string space
2727 com GARBFL ; have we compacted string space yet?
2728 beq LB555 ; brif so - raise error
2729 bsr LB591 ; compact string space
2730 puls b ; get back string length
2731 bra LB56F ; go try allocation again
2732 ; Compact string space
2733 ; This is an O(n^2) algorithm. It first searches all extant strings for the highest address data pointer
2734 ; that hasn't already been moved into the freshly compacted string space. If then moves that string data
2735 ; up to the highest address it can go to. It repeats this process over and over until it finds no string
2736 ; that isn't already in the compacted space. While doing this, it has to search all strings on the string
2737 ; stack (this is why the string stack is needed - so we can track anonymous strings), all scalar string
2738 ; variables, and *every* entry in every string array.
2739 LB591 ldx MEMSIZ ; get to of string space
2740 LB593 stx STRTAB ; save top of uncompacted stringspace
2741 clra ; zero out D and reset pointer to discovered variable to NULL
2742 clrb
2743 std V4B
2744 ldx FRETOP ; point to bottom of string space
2745 stx V47 ; save as lowest match address (match will be higher)
2746 ldx #STRSTK ; point to start of string stack
2747 LB5A0 cmpx TEMPPT ; are we at the top of the string stack?
2748 beq LB5A8 ; brif so - done with the string stack
2749 bsr LB5D8 ; check for string in uncompacted space (and advance pointer)
2750 bra LB5A0 ; check another on the string stack
2751 LB5A8 ldx VARTAB ; point to start of scalar variables
2752 LB5AA cmpx ARYTAB ; end of scalars?
2753 beq LB5B2 ; brif so
2754 bsr LB5D2 ; check for string in uncompacted space and advance pointer
2755 bra LB5AA ; check another variable
2756 LB5B2 stx V41 ; save address of end of variables (address of first array)
2757 LB5B4 ldx V41 ; get start of the next array
2758 LB5B6 cmpx ARYEND ; end of arrays?
2759 beq LB5EF ; brif so
2760 ldd 2,x ; get length of array
2761 addd V41 ; add to start of array
2762 std V41 ; save address of next array
2763 lda 1,x ; get second character of variable name
2764 bpl LB5B4 ; brif numeric
2765 ldb 4,x ; get number of dimensions
2766 aslb ; two bytes per dimension size
2767 addb #5 ; add in fixed overhead for array descriptor
2768 abx ; now X points to first array element
2769 LB5CA cmpx V41 ; at the start of the next array?
2770 beq LB5B6 ; brif so - go handle another array
2771 bsr LB5D8 ; check for string in uncompacted space (and advance pointer)
2772 bra LB5CA ; process next array element
2773 LB5D2 lda 1,x ; get second character of variable name
2774 leax 2,x ; move to variable data
2775 bpl LB5EC ; brif numeric
2776 LB5D8 ldb ,x ; get length of string
2777 beq LB5EC ; brif NULL - don't need to check data pointer
2778 ldd 2,x ; get data pointer
2779 cmpd STRTAB ; is it in compacted string space?
2780 bhi LB5EC ; brif so
2781 cmpd V47 ; is it better match than previous best?
2782 bls LB5EC ; brif not
2783 stx V4B ; save descriptor address of best match
2784 std V47 ; save new best data pointer match
2785 LB5EC leax 5,x ; move to next descriptor
2786 LB5EE rts
2787 LB5EF ldx V4B ; get descriptor address of the matched string
2788 beq LB5EE ; brif we didn't find one - we're done
2789 clra ; zero extend length
2790 ldb ,x ; get string length
2791 decb ; subtract one (we won't have a NULL string here)
2792 addd V47 ; now D points to the address of the end of the string data
2793 std V43 ; save as top address of move
2794 ldx STRTAB ; set top of uncompacted space as destination
2795 stx V41
2796 jsr LAC20 ; move string to top of uncompactedspace
2797 ldx V4B ; point to string descriptor
2798 ldd V45 ; get new data pointer address
2799 std 2,x ; update descriptor
2800 ldx V45 ; get bottom of copy destination
2801 leax -1,x ; move back below it
2802 jmp LB593 ; go search for another string to move (and set new bottom of string space)
2803 ; Concatenate two strings. We come here directly from the operator handler rather than via a JSR.
2804 LB60F ldd FPA0+2 ; get string descriptor for the first string
2805 pshs d ; save it
2806 jsr LB223 ; evaluate a second string (concatenation is left associative)
2807 jsr LB146 ; make sure we have a string
2808 puls x ; get back first string descriptor
2809 stx RESSGN ; save it
2810 ldb ,x ; get length of first string
2811 ldx FPA0+2 ; get pointer to second string
2812 addb ,x ; add length of second string
2813 bcc LB62A ; brif combined length is OK
2814 ldb #2*14 ; raise string too long error
2815 jmp LAC46
2816 LB62A jsr LB50D ; reserve room for new string
2817 ldx RESSGN ; get descriptor address of the first string
2818 ldb ,x ; get length of first string
2819 bsr LB643 ; copy it to string space
2820 ldx V4D ; get descriptor address of second string
2821 bsr LB659 ; get string details for second string
2822 bsr LB645 ; copy second string into new string space
2823 ldx RESSGN ; get pointer to first string
2824 bsr LB659 ; remove it from the string stack if possible
2825 jsr LB54C ; put new string on the string stack
2826 jmp LB168 ; return to expression evaluator
2827 ; Copy B bytes to space pointed to by FRESPC
2828 LB643 ldx 2,x ; get source address from string descriptor
2829 LB645 ldu FRESPC ; get destination address
2830 incb ; compensate for decb
2831 bra LB64E ; do the copy
2832 LB64A lda ,x+ ; copy a byte
2833 sta ,u+
2834 LB64E decb ; done yet?
2835 bne LB64A ; brif not
2836 stu FRESPC ; save destination pointer
2837 rts
2838 ; Fetch details of string in FPA0+2 and remove from the string stack if possible
2839 LB654 jsr LB146 ; make sure we have a string
2840 LB657 ldx FPA0+2 ; get descriptor pointer
2841 LB659 ldb ,x ; get length of string
2842 bsr LB675 ; see if it's at the top of the string stack and remove it if so
2843 bne LB672 ; brif not removed
2844 ldx 5+2,x ; get start address of string just removed
2845 leax -1,x ; move pointer down 1
2846 cmpx STRTAB ; is it at the bottom of string space?
2847 bne LB66F ; brif not
2848 pshs b ; save length
2849 addd STRTAB ; add length to start of strings (A was cleared previously)
2850 std STRTAB ; save new string space start (deallocated space for this string)
2851 puls b ; get back string length
2852 LB66F leax 1,x ; restore pointer to pointing at the actual string data
2853 rts
2854 LB672 ldx 2,x ; get data pointer for the string
2855 rts
2856 ; Remove string pointed to by X from the string stack if it is at the top of the stack; return with
2857 ; A clear and Z set if string removed
2858 LB675 cmpx LASTPT ; is it at the top of the string stack?
2859 bne LB680 ; brif not - do nothing
2860 stx TEMPPT ; save new top of stack
2861 leax -5,x ; move the "last" pointer back as well
2862 stx LASTPT
2863 clra ; flag string removed
2864 LB680 rts
2865 ; LEN function
2866 LEN bsr LB686 ; get string details
2867 LB683 jmp LB4F3 ; return unsigned length in B
2868 LB686 bsr LB654 ; get string details and remove from string stack
2869 clr VALTYP ; set value type to numeric
2870 tstb ; set flags according to length
2871 rts
2872 ; CHR$ function
2873 CHR jsr LB70E ; get 8 bit unsigned integer to B
2874 LB68F ldb #1 ; allocate a one byte string
2875 jsr LB56D
2876 lda FPA0+3 ; get character code
2877 jsr LB511 ; save reserved string details in temp descriptor
2878 sta ,x ; put character in string
2879 LB69B leas 2,s ; don't go back to function handler - avoid numeric type check
2880 LB69D jmp LB54C ; return temporary string on string stack
2881 ; ASC function
2882 ASC bsr LB6A4 ; get first character of argument
2883 bra LB683 ; return unsigned code in B
2884 LB6A4 bsr LB686 ; fetch string details
2885 beq LB706 ; brif NULL string
2886 ldb ,x ; get character at start of string
2887 rts
2888 ; LEFT$ function
2889 LEFT bsr LB6F5 ; get arguments from the stack
2890 LB6AD clra ; clear pointer offset (set to start of string)
2891 LB6AE cmpb ,x ; are we asking for more characters than there are in the string?
2892 bls LB6B5 ; brif not
2893 ldb ,x ; only return the number that are in the string
2894 clra ; force starting offset to be the start of the string
2895 LB6B5 pshs b,a ; save offset and length
2896 jsr LB50F ; reserve space in string space
2897 ldx V4D ; point to original string descriptor
2898 bsr LB659 ; get string details
2899 puls b ; get string offset
2900 abx ; now X points to the start of the data to copy
2901 puls b ; get length of copy
2902 jsr LB645 ; copy the data to the allocated space
2903 bra LB69D ; return temp string on string stack
2904 ; RIGHT$ function
2905 RIGHT bsr LB6F5 ; get arguments from stack
2906 suba ,x ; subtract length of original string from desired length
2907 nega ; now A is offset into old string where we start copying
2908 bra LB6AE ; go handle everything else
2909 ; MID$ function
2910 MID ldb #255 ; default length is the whole string
2911 stb FPA0+3 ; save it
2912 jsr GETCCH ; see what we have after offset
2913 cmpa #') ; end of function?
2914 beq LB6DE ; brif so - no length
2915 jsr LB26D ; force a comma
2916 bsr LB70B ; get length parameter
2917 LB6DE bsr LB6F5 ; get string and offset parameters from the stack
2918 beq LB706 ; brif we have a 0 offset requested (string offsets are 1-based)
2919 clrb ; clear length counter
2920 deca ; subtract one from position parameter (we work on 0-based, param is 1-based)
2921 cmpa ,x ; is start greater than length of string?
2922 bhs LB6B5 ; brif so - return NULL string
2923 tfr a,b ; save absolute position parameter
2924 subb ,x ; now B is postition less length
2925 negb ; now B is amount of string to copy
2926 cmpb FPA0+3 ; is it less than the length requested?
2927 bls LB6B5 ; brif so
2928 ldb FPA0+3 ; set length to the requested length
2929 bra LB6B5 ; go finish up copying the substring
2930 ; Common routine for LEFT$, RIGHT$, MID$ - check for ) and fetch string data and first parameter
2931 ; from the stack. These were evaluated in the function evaluation handler. (It's not clear that doing
2932 ; it that way is actually beneficial. However, this is what the ROM designers did, so here we are.)
2933 LB6F5 jsr LB267 ; make sure we have )
2934 ldu ,s ; get return address - we're going to mess with the stack
2935 ldx 5,s ; get address of string descriptor
2936 stx V4D ; save descriptor adddress
2937 lda 4,s ; get first numeric parameter in both A and B
2938 ldb 4,s
2939 leas 7,s ; clean up stack
2940 tfr u,pc ; return to original caller
2941 LB706 jmp LB44A ; raise FC error
2942 ; Evaluate an unsigned 8 bit expression to B
2943 LB709 jsr GETNCH ; move to next character
2944 LB70B jsr LB141 ; evaluate a numeric expression
2945 LB70E jsr LB3E9 ; convert to integer in D
2946 tsta ; are we negative or > 255?
2947 bne LB706 ; brif so - FC error
2948 jmp GETCCH ; fetch current input character and return
2949 ; VAL function
2950 VAL jsr LB686 ; get string details
2951 lbeq LBA39 ; brif NULL string - return 0
2952 ldu CHARAD ; get input pointer so we can replace it later
2953 stx CHARAD ; point interpreter at string data
2954 abx ; calculate end address of the string
2955 lda ,x ; get byte after the end of the string
2956 pshs u,x,a ; save end of string address, input pointer, and character after end of string
2957 clr ,x ; put a NUL after the string (stops the number interpreter)
2958 jsr GETCCH ; get input character at start of string
2959 jsr LBD12 ; evaluate numeric expression in string
2960 puls a,x,u ; get back saved character and pointers
2961 sta ,x ; restore byte after string
2962 stu CHARAD ; restore interpeter's input pointer
2963 rts
2964 ; Evaluate unsigned expression to BINVAL, then evaluate an unsigned expression to B
2965 LB734 bsr LB73D ; evaluate expression
2966 stx BINVAL ; save result
2967 LB738 jsr LB26D ; make sure there's a comma
2968 bra LB70B ; evaluate unsigned expression to B
2969 ; Evaluate unsigned expression in X
2970 LB73D jsr LB141 ; evaluate numeric expression
2971 LB740 lda FP0SGN ; is it negative?
2972 bmi LB706 ; brif so
2973 lda FP0EXP ; get exponent
2974 cmpa #0x90 ; largest possible exponent for 16 bits
2975 bhi LB706 ; brif too large
2976 jsr LBCC8 ; move binary point to right of FPA0
2977 ldx FPA0+2 ; get resulting unsigned value
2978 rts
2979 ; PEEK function
2980 PEEK bsr LB740 ; get address to X
2981 ldb ,x ; get the value at that address
2982 jmp LB4F3 ; return B as unsigned value
2983 ; POKE function
2984 POKE bsr LB734 ; evaluate address and byte value
2985 ldx BINVAL ; get address
2986 stb ,x ; put value there
2987 rts
2988 ; LLIST command
2989 LLIST ldb #-2 ; set output device to printer
2990 stb DEVNUM
2991 jsr GETCCH ; reset flags for input character and fall through to LIST
2992 ; LIST command
2993 LIST pshs cc ; save zero flag (end of statement)
2994 jsr LAF67 ; parse line number
2995 jsr LAD01 ; find address of that line
2996 stx LSTTXT ; save that address as the start of the list
2997 puls cc ; get back ent of statement flag
2998 beq LB784 ; brif end of line - list whole program
2999 jsr GETCCH ; are we at the end of the line (one number)?
3000 beq LB789 ; brif end of line
3001 cmpa #0xac ; is it "-"?
3002 bne LB783 ; brif not
3003 jsr GETNCH ; eat the "-"
3004 beq LB784 ; brif no second number - list to end of program
3005 jsr LAF67 ; evaluate the second number
3006 beq LB789 ; brif illegal number
3007 LB783 rts
3008 LB784 ldu #0xffff ; this will cause listing to do the entire program
3009 stu BINVAL
3010 LB789 leas 2,s ; don't return to the caller - we'll jump back to the main loop
3011 ldx LSTTXT ; get address of line to list
3012 LB78D jsr LB95C ; do a newline if needed
3013 jsr LA549 ; do a break check
3014 ldd ,x ; get address of next line
3015 bne LB79F ; brif not end of program
3016 LB797 jsr LA42D ; close output file
3017 clr DEVNUM ; reset device to screen
3018 jmp LAC73 ; go back to immediate mode
3019 LB79F stx LSTTXT ; save new line address
3020 ldd 2,x ; get line number of this line
3021 cmpd BINVAL ; is it above the end line?
3022 bhi LB797 ; brif so - return
3023 jsr LBDCC ; display line number
3024 jsr LB9AC ; put a space after it
3025 ldx LSTTXT ; get line address
3026 bsr LB7C2 ; detokenize the line
3027 ldx [LSTTXT] ; get pointer to next line
3028 ldu #LINBUF+1 ; point to start of detokenized line
3029 LB7B9 lda ,u+ ; get byte from detokenized line
3030 beq LB78D ; brif end of line
3031 jsr LB9B1 ; output character
3032 bra LB7B9 ; handle next character
3033 ; Detokenize a line from (X) to the line input buffer
3034 LB7C2 jsr RVEC24 ; do the RAM hook dance
3035 leax 4,x ; move past next line pointer and line number
3036 ldy #LINBUF+1 ; point to line input buffer (destination)
3037 LB7CB lda ,x+ ; get character from tokenized line
3038 beq LB820 ; brif end of input
3039 bmi LB7E6 ; brif it's a token
3040 cmpa #': ; colon?
3041 bne LB7E2 ; brif not
3042 ldb ,x ; get what's after the colon
3043 cmpb #0x84 ; ELSE?
3044 beq LB7CB ; brif so - suppress the colon
3045 cmpb #0x83 ; '?
3046 beq LB7CB ; brif so - suppress the colon
3047 skip2
3048 LB7E0 lda #'! ; placeholder for unknown token
3049 LB7E2 bsr LB814 ; stow output character
3050 bra LB7CB ; go process another input character
3051 LB7E6 ldu #COMVEC-10 ; point to command interptation table
3052 cmpa #0xff ; is it a function?
3053 bne LB7F1 ; brif not
3054 lda ,x+ ; get function token
3055 leau 5,u ; shift to the function half of the interpretation tables
3056 LB7F1 anda #0x7f ; remove token bias
3057 LB7F3 leau 10,u ; move to next command/function table
3058 tst ,u ; is this table active?
3059 beq LB7E0 ; brif not - use place holder
3060 suba ,u ; subtract number of tokens handled by this table entry
3061 bpl LB7F3 ; brif this token isn't handled here
3062 adda ,u ; undo extra subtraction
3063 ldu 1,u ; get reserved word list for this table
3064 LB801 deca ; are we at the right entry?
3065 bmi LB80A ; brif so
3066 LB804 tst ,u+ ; end of entry?
3067 bpl LB804 ; brif not
3068 bra LB801 ; see if we're there yet
3069 LB80A lda ,u ; get character from wordlist
3070 bsr LB814 ; put character in the buffer
3071 tst ,u+ ; end of word?
3072 bpl LB80A ; brif not
3073 bra LB7CB ; go handle another input character
3074 LB814 cmpy #LINBUF+LBUFMX ; is there room?
3075 bhs LB820 ; brif not
3076 anda #0x7f ; lose bit 7
3077 sta ,y+ ; save character in output
3078 clr ,y ; make sure there's always a NUL terminator
3079 LB820 rts
3080 ; Tokenize the line that the input pointer is pointing to; put result in the line input buffer; return
3081 ; length in D
3082 LB821 jsr RVEC23 ; do the RAM hook dance
3083 ldx CHARAD ; get input pointer
3084 ldu #LINBUF ; set destination pointer
3085 LB829 clr V43 ; clear alpha string flag
3086 clr V44 ; clear DATA flag
3087 LB82D lda ,x+ ; get input character
3088 beq LB852 ; brif end of input
3089 tst V43 ; are we handling an alphanumeric string?
3090 beq LB844 ; brif not
3091 jsr LB3A2 ; set carry if not alpha
3092 bcc LB852 ; brif alpha
3093 cmpa #'0 ; is it below the digits?
3094 blo LB842 ; brif so
3095 cmpa #'9 ; is it within the digits?
3096 bls LB852 ; brif so
3097 LB842 clr V43 ; flag that we're past the alphanumeric string
3098 LB844 cmpa #0x20 ; space?
3099 beq LB852 ; brif so - keep it
3100 sta V42 ; save scan delimiter
3101 cmpa #'" ; string delimiter?
3102 beq LB886 ; brif so - copy until another "
3103 tst V44 ; doing "DATA"?
3104 beq LB86B ; brif not
3105 LB852 sta ,u+ ; put character in output
3106 beq LB85C ; brif end of input
3107 cmpa #': ; colon?
3108 beq LB829 ; brif so - reset DATA and alpha string flags
3109 LB85A bra LB82D ; go process another input character
3110 LB85C clr ,u+ ; put a double NUL at the end
3111 clr ,u+
3112 tfr u,d ; calculate length of result (includes double NUL and an extra two bytes)
3113 subd #LINHDR
3114 ldx #LINBUF-1 ; point to one before the output
3115 stx CHARAD ; set input pointer there
3116 rts
3117 LB86B cmpa #'? ; print abbreviation?
3118 bne LB873 ; brif not
3119 lda #0x87 ; token for PRINT
3120 bra LB852 ; go stash it
3121 LB873 cmpa #'' ; REM abbreviation?
3122 bne LB88A ; brif not
3123 ldd #0x3a83 ; colon plus ' token
3124 std ,u++ ; put it in the output
3125 LB87C clr V42 ; set delimiter to NUL
3126 LB87E lda ,x+ ; get input
3127 beq LB852 ; brif end of line
3128 cmpa V42 ; at the delimiter?
3129 beq LB852 ; brif so
3130 LB886 sta ,u+ ; save in output
3131 bra LB87E ; keep scanning for delimiter
3132 LB88A cmpa #'0 ; is it below digits?
3133 blo LB892 ; brif so
3134 cmpa #';+1 ; is it digit, colon, or semicolon?
3135 blo LB852 ; brif so
3136 LB892 leax -1,x ; move input pointer back one (to point at this input character)
3137 pshs u,x ; save input and output pointers
3138 clr V41 ; set token type to 0 (command)
3139 ldu #COMVEC-10 ; point to command interpretation table
3140 LB89B clr V42 ; set token counter to 0 (0x80)
3141 LB89D leau 10,u ;
3142 lda ,u ; get number of reserved words
3143 beq LB8D4 ; brif this table isn't active
3144 ldy 1,u ; point to reserved words list
3145 LB8A6 ldx ,s ; get input pointer
3146 LB8A8 ldb ,y+ ; get character from reserved word table
3147 subb ,x+ ; compare with input character
3148 beq LB8A8 ; brif exact match
3149 cmpb #0x80 ; brif it was the last character in word and exact match
3150 bne LB8EA ; brif not
3151 leas 2,s ; remove original input pointer from stack
3152 puls u ; get back output pointer
3153 orb V42 ; create token value (B has 0x80 from above)
3154 lda V41 ; get token type
3155 bne LB8C2 ; brif function
3156 cmpb #0x84 ; is it ELSE?
3157 bne LB8C6 ; brif not
3158 lda #': ; silently add a colon before ELSE
3159 LB8C2 std ,u++ ; put two byte token into output
3160 bra LB85A ; go handle more input
3161 LB8C6 stb ,u+ ; save single byte token
3162 cmpb #0x86 ; DATA?
3163 bne LB8CE ; brif not
3164 inc V44 ; set DATA flag
3165 LB8CE cmpb #0x82 ; REM?
3166 beq LB87C ; brif so - skip over rest of line
3167 LB8D2 bra LB85A ; go handle more input
3168 LB8D4 ldu #COMVEC-5 ; point to interpretation table, function style
3169 LB8D7 com V41 ; invert token flag
3170 bne LB89B ; brif we haven't already done functions
3171 puls x,u ; restore input and output pointers
3172 lda ,x+ ; copy first character
3173 sta ,u+
3174 jsr LB3A2 ; set C if not alpha
3175 bcs LB8D2 ; brif not alpha - it isn't a variable
3176 com V43 ; set alphanumeric string flag
3177 bra LB8D2 ; process more input
3178 LB8EA inc V42 ; bump token number
3179 deca ; checked all in this table?
3180 beq LB89D ; brif so
3181 leay -1,y ; unconsume last compared character
3182 LB8F1 ldb ,y+ ; end of entry?
3183 bpl LB8F1 ; brif not
3184 bra LB8A6 ; check next reserved word
3185 ; PRINT command
3186 PRINT beq LB958 ; brif no argument - do a newline
3187 bsr LB8FE ; process print options
3188 clr DEVNUM ; reset output to screen
3189 rts
3190 LB8FE cmpa #'@ ; is it PRINT @?
3191 bne LB907 ; brif not
3192 jsr LA554 ; move cursor to correct location
3193 bra LB911 ; handle some more
3194 LB907 cmpa #'# ; device number specified?
3195 bne LB918 ; brif not
3196 jsr LA5A5 ; parse device number
3197 jsr LA406 ; check for valid output file
3198 LB911 jsr GETCCH ; get input character
3199 beq LB958 ; brif nothing - do newline
3200 jsr LB26D ; need comma after @ or #
3201 LB918 jsr RVEC9 ; do the RAM hook boogaloo
3202 LB91B beq LB965 ; brif end of input
3203 LB91D cmpa #0xa4 ; TAB(?
3204 beq LB97E ; brif so
3205 cmpa #', ; comma (next tab field)?
3206 beq LB966 ; brif so
3207 cmpa #'; ; semicolon (do not advance print position)
3208 beq LB997 ; brif so
3209 jsr LB156 ; evaluate expression
3210 lda VALTYP ; get type of value
3211 pshs a ; save it
3212 bne LB938 ; brif string
3213 jsr LBDD9 ; convert FP number to string
3214 jsr LB516 ; parse a string and put on string stack
3215 LB938 bsr LB99F ; print string
3216 puls b ; get back variable type
3217 jsr LA35F ; set up print parameters
3218 tst PRTDEV ; is it a display device?
3219 beq LB949 ; brif so
3220 bsr LB958 ; do a newline
3221 jsr GETCCH ; get input
3222 bra LB91B ; process more print stuff
3223 LB949 tstb ; set flags on print position
3224 bne LB954 ; brif not at start of line
3225 jsr GETCCH ; get current input
3226 cmpa #', ; comma?
3227 beq LB966 ; skip to next tab field if so
3228 bsr LB9AC ; send a space
3229 LB954 jsr GETCCH ; get input character
3230 bne LB91D ; brif not end of statement
3231 LB958 lda #0x0d ; carriage return
3232 bra LB9B1 ; send it to output
3233 LB95C jsr LA35F ; set up print parameters
3234 LB95F beq LB958 ; brif width is 0
3235 lda DEVPOS ; get line position
3236 bne LB958 ; brif not at start of line
3237 LB965 rts
3238 LB966 jsr LA35F ; set up print parameters
3239 beq LB975 ; brif line width is 0
3240 ldb DEVPOS ; get line position
3241 cmpb DEVLCF ; at or past last comma field?
3242 blo LB977 ; brif so
3243 bsr LB958 ; move to next line
3244 bra LB997 ; handle more stuff
3245 LB975 ldb DEVPOS ; get line position
3246 LB977 subb DEVCFW ; subtract a comma field width
3247 bhs LB977 ; brif we don't have a remainder yet
3248 negb ; now B is number of of spaces needed
3249 bra LB98E ; go advance
3250 LB97E jsr LB709 ; evaluate TAB distance
3251 cmpa #') ; closing )?
3252 lbne LB277 ; brif not
3253 jsr LA35F ; set up print parameters
3254 subb DEVPOS ; subtract print position from desired position
3255 bls LB997 ; brif we're already past it
3256 LB98E tst PRTDEV ; is it a display device?
3257 bne LB997 ; brif not
3258 LB992 bsr LB9AC ; output a space
3259 decb ; done enough?
3260 bne LB992 ; brif not
3261 LB997 jsr GETNCH ; get input character
3262 jmp LB91B ; process more items
3263 ; cpoy string from (X-1) to output
3264 LB99C jsr LB518 ; parse the string
3265 LB99F jsr LB657 ; get string details
3266 LB9A2 incb ; compensate for decb
3267 LB9A3 decb ; done all of the string?
3268 beq LB965 ; brif so
3269 lda ,x+ ; get character from string
3270 bsr LB9B1 ; send to output
3271 bra LB9A3 ; go do another character
3272 LB9AC lda #0x20 ; space character
3273 skip2
3274 LB9AF lda #'? ; question mark character
3275 LB9B1 jmp PUTCHR ; output character
3276 ; The floating point math package and related functions and operations follow from here
3277 ; to the end of the Color Basic ROM area
3278 LB9B4 ldx #LBEC0 ; point to FP constant 0.5
3279 bra LB9C2 ; add 0.5 to FPA0
3280 LB9B9 jsr LBB2F ; unpack FP data from (X) to FPA1
3281 ; subtraction operator
3282 LB9BC com FP0SGN ; invert sign of FPA0 (subtracting is adding the negative)
3283 com RESSGN ; that also inverts the sign differential
3284 bra LB9C5 ; go add the negative of FPA0 to FPA1
3285 LB9C2 jsr LBB2F ; unpack FP data from (X) to FPA1
3286 ; addition operator
3287 LB9C5 tstb ; check exponent of FPA0
3288 lbeq LBC4A ; copy FPA1 to FPA0 if FPA0 is 0
3289 ldx #FP1EXP ; point X to FPA1 (first operand) as the operand to denormalize
3290 LB9CD tfr a,b ; put exponent of FPA1 into B
3291 tstb ; is FPA1 0?
3292 beq LBA3E ; brif exponent is 0 - no-op; adding 0 to FPA0
3293 subb FP0EXP ; get difference in exponents - number of bits to shift the smaller mantissa
3294 beq LBA3F ; brif exponents are equal - no need to denormalize
3295 bmi LB9E2 ; brif FPA0 > FPA1
3296 sta FP0EXP ; replace result exponent with FPA1's (FPA1 is bigger)
3297 lda FP1SGN ; also copy sign over
3298 sta FP0SGN
3299 ldx #FP0EXP ; point to FPA0 (we need to denormalize the smaller number)
3300 negb ; invert the difference - this is the number of bits to shift the mantissa
3301 LB9E2 cmpb #-8 ; do we have to shift by a whole byte?
3302 ble LBA3F ; brif so start by shifting whole bytes to the right
3303 clra ; clear overflow byte
3304 lsr 1,x ; shift high bit of mantissa right (LSR will force a zero into the high bit)
3305 jsr LBABA ; shift remainder of mantissa right -B times
3306 LB9EC ldb RESSGN ; get the sign flag
3307 bpl LB9FB ; brif signs are the same (we add the mantissas then)
3308 com 1,x ; complement the mantissa and extra precision bytes
3309 com 2,x
3310 com 3,x
3311 com 4,x
3312 coma
3313 adca #0 ; add one to A (COM sets C); this may cause a carry to enter the ADD below
3314 LB9FB sta FPSBYT ; save extra precision byte
3315 lda FPA0+3 ; add the main mantissa bytes (and propage carry from above)
3316 adca FPA1+3
3317 sta FPA0+3
3318 lda FPA0+2
3319 adca FPA1+2
3320 sta FPA0+2
3321 lda FPA0+1
3322 adca FPA1+1
3323 sta FPA0+1
3324 lda FPA0
3325 adca FPA1
3326 sta FPA0
3327 tstb ; were signs the same?
3328 bpl LBA5C ; brif so - number may have gotten bigger so normalize if needed
3329 LBA18 bcs LBA1C ; brif we had a carry - result is positive?)
3330 bsr LBA79 ; do a proper negation of FPA0 mantissa
3331 LBA1C clrb ; clear temporary exponent accumulator
3332 LBA1D lda FPA0 ; test high byte of mantissa
3333 bne LBA4F ; brif not 0 - we need to do bit shifting
3334 lda FPA0+1 ; shift left 8 bits
3335 sta FPA0
3336 lda FPA0+2
3337 sta FPA0+1
3338 lda FPA0+3
3339 sta FPA0+2
3340 lda FPSBYT
3341 sta FPA0+3
3342 clr FPSBYT
3343 addb #8 ; account for 8 bits shifted
3344 cmpb #5*8 ; shifted 5 bytes worth?
3345 blt LBA1D ; brif not
3346 LBA39 clra ; zero out exponent and sign - result is 0
3347 LBA3A sta FP0EXP ; set exponent and sign
3348 sta FP0SGN
3349 LBA3E rts
3350 LBA3F bsr LBAAE ; shift FPA0 mantissa to the right
3351 clrb ; clear carry
3352 bra LB9EC ; get on with adding
3353 LBA44 incb ; account for one bit shift
3354 asl FPSBYT ; shift mantissa and extra precision left
3355 rol FPA0+3
3356 rol FPA0+2
3357 rol FPA0+1
3358 rol FPA0
3359 LBA4F bpl LBA44 ; brif we haven't got a 1 in bit 7
3360 lda FP0EXP ; get exponent of result
3361 pshs b ; subtract shift count from exponent
3362 suba ,s+
3363 sta FP0EXP ; save adjusted exponent
3364 bls LBA39 ; brif we underflowed - set result to 0
3365 skip2
3366 LBA5C bcs LBA66 ; brif mantissa overflowed
3367 asl FPSBYT ; get bit 7 of expra precision to C (used for round off)
3368 lda #0 ; set to 0 without affecting C
3369 sta FPSBYT ; clear out extra precision bits
3370 bra LBA72 ; go round off result
3371 LBA66 inc FP0EXP ; bump exponent (for a right shift to bring carry in)
3372 beq LBA92 ; brif we overflowed
3373 ror FPA0 ; shift carry into mantissa, shift right
3374 ror FPA0+1
3375 ror FPA0+2
3376 ror FPA0+3
3377 LBA72 bcc LBA78 ; brif no round-off needed
3378 bsr LBA83 ; add one to mantissa
3379 beq LBA66 ; brif carry - need to shift right again
3380 LBA78 rts
3381 LBA79 com FP0SGN ; invert sign of value
3382 LBA7B com FPA0 ; first do a one's copmlement
3383 com FPA0+1
3384 com FPA0+2
3385 com FPA0+3
3386 LBA83 ldx FPA0+2 ; add one to mantissa (after one's complement gives two's complement)
3387 leax 1,x ; bump low word
3388 stx FPA0+2
3389 bne LBA91 ; brif no carry from low word
3390 ldx FPA0 ; bump high word
3391 leax 1,x
3392 stx FPA0
3393 LBA91 rts
3394 LBA92 ldb #2*5 ; code for overflow
3395 jmp LAC46 ; raise error
3396 LBA97 ldx #FPA2-1 ; point to FPA2
3397 LBA9A lda 4,x ; shift mantissa right by 8 bits
3398 sta FPSBYT
3399 lda 3,x
3400 sta 4,x
3401 lda 2,x
3402 sta 3,x
3403 lda 1,x
3404 sta 2,x
3405 lda FPCARY ; and handle extra precision on the left
3406 sta 1,x
3407 LBAAE addb #8 ; account for 8 bits shifted
3408 ble LBA9A ; brif more shifts needed
3409 lda FPSBYT ; get sub byte (extra precision)
3410 subb #8 ; undo the 8 added above
3411 beq LBAC4 ; brif difference is 0
3412 LBAB8 asr 1,x ; shift mantissa and sub byte one bit (keep mantissa high bit set)
3413 LBABA ror 2,x
3414 ror 3,x
3415 ror 4,x
3416 rora
3417 incb ; account for one shift
3418 bne LBAB8 ; brif not enought shifts yet
3419 LBAC4 rts
3420 LBAC5 fcb 0x81,0x00,0x00,0x00,0x00 ; packed FP 1.0
3421 LBACA bsr LBB2F ; unpack FP value from (X) to FPA1
3422 ; multiplication operator
3423 LBACC beq LBB2E ; brif exponent of FPA0 is 0 (result is 0)
3424 bsr LBB48 ; calculate exponent of product
3425 LBAD0 lda #0 ; zero out mantissa of FPA2
3426 sta FPA2
3427 sta FPA2+1
3428 sta FPA2+2
3429 sta FPA2+3
3430 ldb FPA0+3 ; multiply FPA1 by LSB of FPA0
3431 bsr LBB00
3432 ldb FPSBYT ; save extra precision byte
3433 stb VAE
3434 ldb FPA0+2
3435 bsr LBB00 ; again for next byte of FPA0
3436 ldb FPSBYT
3437 stb VAD
3438 ldb FPA0+1 ; again for next byte of FPA0
3439 bsr LBB00
3440 ldb FPSBYT
3441 stb VAC
3442 ldb FPA0 ; and finally for the high byte
3443 bsr LBB02
3444 ldb FPSBYT
3445 stb VAB
3446 jsr LBC0B ; copy mantissa from FPA2 to FPA0 (result)
3447 jmp LBA1C ; normalize
3448 LBB00 beq LBA97 ; brif multiplier is 0 - just shift, don't multiply
3449 LBB02 coma ; set carry
3450 LBB03 lda FPA2 ; get FPA2 MS byte
3451 rorb ; data bit to carry; will be 0 when all shifts done
3452 beq LBB2E ; brif 8 shifts done
3453 bcc LBB20 ; brif data bit is 0 - no addition
3454 lda FPA2+3 ; add mantissa of FPA1 and FPA2
3455 adda FPA1+3
3456 sta FPA2+3
3457 lda FPA2+2
3458 adca FPA1+2
3459 sta FPA2+2
3460 lda FPA2+1
3461 adca FPA1+1
3462 sta FPA2+1
3463 lda FPA2
3464 adca FPA1
3465 LBB20 rora ; shift carry into FPA2
3466 sta FPA2
3467 ror FPA2+1
3468 ror FPA2+2
3469 ror FPA2+3
3470 ror FPSBYT
3471 clra ; clear carry
3472 bra LBB03
3473 LBB2E rts
3474 ; Unpack FP value from (X) to FPA1
3475 LBB2F ldd 1,x ; copy mantissa (and sign)
3476 sta FP1SGN ; save sign bit
3477 ora #0x80 ; make sure mantissa has bit 7 set
3478 std FPA1
3479 ldb FP1SGN ; get sign
3480 eorb FP0SGN ; set if FPA0 sign differs
3481 stb RESSGN
3482 ldd 3,x ; copy remainder of mantissa
3483 std FPA1+2
3484 lda ,x ; and exponent
3485 sta FP1EXP
3486 ldb FP0EXP ; fetch FPA0 exponent and set flags
3487 rts
3488 ; Calculate eponent for product of FPA0 and FPA1
3489 LBB48 tsta ; is FPA1 zero?
3490 beq LBB61 ; brif so
3491 adda FP0EXP ; add to exponent of FPA0 (this is how scientific notation works)
3492 rora ; set V if we *don't* have an overflow
3493 rola
3494 bvc LBB61 ; brif exponent too larger or small
3495 adda #0x80 ; restore the bias
3496 sta FP0EXP ; set result exponent
3497 beq LBB63 ; brif 0 - clear FPA0
3498 lda RESSGN ; the result sign (negative if signs differ) is the result sign
3499 sta FP0SGN ; so set it as such
3500 rts
3501 LBB5C lda FP0SGN ; get sign of FPA0
3502 coma ; invert sign
3503 bra LBB63 ; zero sign and exponent
3504 LBB61 leas 2,s ; don't go back to caller (mul/div) - return to previous caller
3505 LBB63 lbpl LBA39 ; brif we underflowed - go zero things out
3506 LBB67 jmp LBA92 ; raise overflow error
3507 ; fast multiply by 10 - leave result in FPA0
3508 LBB6A jsr LBC5F ; copy FPA0 to FPA1 (for addition later)
3509 beq LBB7C ; brif exponent is 0 - it's a no-op then
3510 adda #2 ; this gives "times 4"
3511 bcs LBB67 ; raise overflow if required
3512 clr RESSGN ; set result sign to "signs the same"
3513 jsr LB9CD ; add FPA1 to FPA0 "times 5"
3514 inc FP0EXP ; times 10
3515 beq LBB67 ; brif overflow
3516 LBB7C rts
3517 LBB7D fcb 0x84,0x20,0x00,0x00,0x00 ; packed FP constant 10.0
3518 ; Divide by 10
3519 LBB82 jsr LBC5F ; move FPA0 to FPA1
3520 ldx #LBB7D ; point to constant 10
3521 clrb ; zero sign
3522 LBB89 stb RESSGN ; result will be positive or zero
3523 jsr LBC14 ; unpack constant 10 to FPA0
3524 skip2 ; fall through to division (divide FPA1 by 10)
3525 LBB8F bsr LBB2F ; unpack FP number from (X) to FPA1
3526 ; division operator
3527 LBB91 beq LBC06 ; brif FPA0 is 0 - division by zero
3528 neg FP0EXP ; get exponent of reciprocal of the divisor
3529 bsr LBB48 ; calculate exponent of quotient
3530 inc FP0EXP ; bump exponent (due to division algorithm below)
3531 beq LBB67 ; brif overflow
3532 ldx #FPA2 ; point to temporary storage location
3533 ldb #4 ; do 5 bytes
3534 stb TMPLOC ; save counter
3535 ldb #1 ; shift counter and quotient byte
3536 LBBA4 lda FPA0 ; compare mantissa of FPA0 to FPA1, set C if FPA1 less
3537 cmpa FPA1
3538 bne LBBBD
3539 lda FPA0+1
3540 cmpa FPA1+1
3541 bne LBBBD
3542 lda FPA0+2
3543 cmpa FPA1+2
3544 bne LBBBD
3545 lda FPA0+3
3546 cmpa FPA1+3
3547 bne LBBBD
3548 coma ; set C if FPA0 = FPA1 (it "goes")
3549 LBBBD tfr cc,a ; save "it goes" status
3550 rolb ; rotate carry into quotient
3551 bcc LBBCC ; brif carry clear - haven't done 8 shifts yet
3552 stb ,x+ ; save quotient byte
3553 dec TMPLOC ; done enough bytes?
3554 bmi LBBFC ; brif done all 5
3555 beq LBBF8 ; brif last byte
3556 ldb #1 ; reset shift counter and quotient byte
3557 LBBCC tfr a,cc ; get back carry status
3558 bcs LBBDE ; brif it "went"
3559 LBBD0 asl FPA1+3 ; shift mantissa (dividend) left
3560 rol FPA1+2
3561 rol FPA1+1
3562 rol FPA1
3563 bcs LBBBD ; brif carry - it "goes" so we have to bump quotient
3564 bmi LBBA4 ; brif high order bit is set - compare mantissas
3565 bra LBBBD ; otherwise, count a 0 bit and try next bit
3566 LBBDE lda FPA1+3 ; subtract mantissa of FPA0 from mantissa of FPA1
3567 suba FPA0+3
3568 sta FPA1+3
3569 lda FPA1+2
3570 sbca FPA0+2
3571 sta FPA1+2
3572 lda FPA1+1
3573 sbca FPA0+1
3574 sta FPA1+1
3575 lda FPA1
3576 sbca FPA0
3577 sta FPA1
3578 bra LBBD0 ; go check for another go
3579 LBBF8 ldb #0x40 ; only two bits in last byte (for rounding)
3580 bra LBBCC ; go do the last byte
3581 LBBFC rorb ; get low bits to bits 7,6 and C to bit 5
3582 rorb
3583 rorb
3584 stb FPSBYT ; save result extra precision
3585 bsr LBC0B ; move FPA2 mantissa to FPA0 (result)
3586 jmp LBA1C ; go normalize the result
3587 LBC06 ldb #2*10 ; division by zero
3588 jmp LAC46 ; raise error
3589 ; Copy mantissa of FPA2 to FPA0
3590 LBC0B ldx FPA2 ; copy high word
3591 stx FPA0
3592 ldx FPA2+2 ; copy low word
3593 stx FPA0+2
3594 rts
3595 ; unpack FP number at (X) to FPA0
3596 LBC14 pshs a ; save register
3597 ldd 1,x ; get mantissa high word and sign
3598 sta FP0SGN ; set sign
3599 ora #0x80 ; make sure mantissa always has bit 7 set
3600 std FPA0
3601 clr FPSBYT ; clear extra precision
3602 ldb ,x ; get exponent
3603 ldx 3,x ; copy mantissa low word
3604 stx FPA0+2
3605 stb FP0EXP ; save exponent (and set flags)
3606 puls a,pc ; restore register and return
3607 LBC2A ldx #V45 ; point to FPA4
3608 bra LBC35 ; pack FPA0 there
3609 LBC2F ldx #V40 ; point to FPA3
3610 skip2 ; fall through to pack FPA0 there
3611 LBC33 ldx VARDES ; get variable descriptor pointer
3612 ; Pack FPA0 to (X)
3613 LBC35 lda FP0EXP ; get exponent
3614 sta ,x ; save it
3615 lda FP0SGN ; get sign
3616 ora #0x7f ; force set low bits - only keep sign in high bit
3617 anda FPA0 ; merge in bits 6-0 of high byte of mantissa
3618 sta 1,x ; save it
3619 lda FPA0+1 ; copy next highest byte
3620 sta 2,x
3621 ldu FPA0+2 ; and the low word of the mantissa
3622 stu 3,x
3623 rts
3624 ; Copy FPA1 to FPA0; return with sign in A
3625 LBC4A lda FP1SGN ; copy sign
3626 LBC4C sta FP0SGN
3627 ldx FP1EXP ; copy exponent, mantissa high byte
3628 stx FP0EXP
3629 clr FPSBYT ; clear extra precision
3630 lda FPA1+1 ; copy mantissa second highest byte
3631 sta FPA0+1
3632 lda FP0SGN ; set sign for return
3633 ldx FPA1+2 ; copy low word of mantissa
3634 stx FPA0+2
3635 rts
3636 ; Copy FPA0 to FPA1
3637 LBC5F ldd FP0EXP ; copy exponent and high byte of mantissa
3638 std FP1EXP
3639 ldx FPA0+1 ; copy middle bytes of mantissa
3640 stx FPA1+1
3641 ldx FPA0+3 ; copy low byte of mantissa and sign
3642 stx FPA1+3
3643 tsta ; set flags on exponent
3644 rts
3645 ; check FPA0: return B = 0, if FPA0 is 0, 0xff if negative, and 0x01 if positive
3646 LBC6D ldb FP0EXP ; get exponent
3647 beq LBC79 ; brif 0
3648 LBC71 ldb FP0SGN ; get sign
3649 LBC73 rolb ; get sign to C
3650 ldb #0xff ; set for negative result
3651 bcs LBC79 ; brif negative
3652 negb ; set to 1 for positive
3653 LBC79 rts
3654 ; SGN function
3655 SGN bsr LBC6D ; get sign of FPA0
3656 LBC7C stb FPA0 ; save result
3657 clr FPA0+1 ; clear next lower 8 bits
3658 ldb #0x88 ; exponent if mantissa is 8 bit integer
3659 LBC82 lda FPA0 ; get high bits of mantissa
3660 suba #0x80 ; set C if mantissa was positive (will cause a negation if it was negative)
3661 LBC86 stb FP0EXP ; set exponent
3662 ldd ZERO ; clear out low word
3663 std FPA0+2
3664 sta FPSBYT ; clear extra precision
3665 sta FP0SGN ; set sign to positive
3666 jmp LBA18 ; normalize the result
3667 ; ABS function
3668 ABS clr FP0SGN ; force FPA0 to be positive (yes, it's that simple)
3669 rts
3670 ; Compare packed FP number at (X) to FPA0
3671 ; Return with B = -1, 0, 1 for FPA0 <, =, > (X) and flags set based on that
3672 LBC96 ldb ,x ; get exponent of (X)
3673 beq LBC6D ; brif (X) is 0
3674 ldb 1,x ; get MS byte of mantissa of (X)
3675 eorb FP0SGN ; set bit 7 if signs of (X) and FPA0 differ
3676 bmi LBC71 ; brif signs differ - no need to compare the magnitude
3677 LBCA0 ldb FP0EXP ; compare exponents and brif different
3678 cmpb ,x
3679 bne LBCC3
3680 ldb 1,x ; compare mantissa (but we have to pack the FPA0 bits first
3681 orb #0x7f ; keep only sign bit (note: signs are the same)
3682 andb FPA0 ; merge in the mantissa bits from FPA0
3683 cmpb 1,x ; do the packed versions match?
3684 bne LBCC3 ; brif not
3685 ldb FPA0+1 ; compare second byte of mantissas
3686 cmpb 2,x
3687 bne LBCC3
3688 ldb FPA0+2 ; compare third byte of mantissas
3689 cmpb 3,x
3690 bne LBCC3
3691 ldb FPA0+3 ; compare low byte of mantissas, but use subtraction so B = 0 on match
3692 subb 4,x
3693 bne LBCC3
3694 rts ; return B = 0 if (X) = FPA0
3695 LBCC3 rorb ; shift carry to bit 7 (C set if FPA0 < (X))
3696 eorb FP0SGN ; invert the comparision sense if the signs are negative
3697 bra LBC73 ; interpret comparison result
3698 ; Shift mantissa of FPA0 until the binary point is immediately to the right of the mantissa and set up the
3699 ; result as a two's complement value.
3700 LBCC8 ldb FP0EXP ; get exponent of FPA0
3701 beq LBD09 ; brif FPA0 is zero - we don't have to do anything, just blank it
3702 subb #0xa0 ; calculate number of shifts to get to the correct exponent (binary point to the right)
3703 lda FP0SGN ; do we have a positive number?
3704 bpl LBCD7 ; brif so
3705 com FPCARY ; negate the mantissa and set extra inbound precision to the correct sign
3706 jsr LBA7B
3707 LBCD7 ldx #FP0EXP ; point to FPA0
3708 cmpb #-8 ; moving by whole bytes?
3709 bgt LBCE4 ; brif not
3710 jsr LBAAE ; do bit shifting
3711 clr FPCARY ; clear carry in byte
3712 rts
3713 LBCE4 clr FPCARY ; clear the extra carry in precision
3714 lda FP0SGN ; get sign of value
3715 rola ; get sign to carry (so rotate repeats the sign)
3716 ror FPA0 ; shift the first bit
3717 jmp LBABA ; do the shifting dance
3718 ; INT function
3719 INT ldb FP0EXP ; get exponent
3720 cmpb #0xa0 ; is the number big enough that there can be no fractional part?
3721 bhs LBD11 ; brif so - we don't have to do anything
3722 bsr LBCC8 ; go shift binary point to the right of the mantissa
3723 stb FPSBYT ; save extra precision bits
3724 lda FP0SGN ; get original sign
3725 stb FP0SGN ; force result to be positive
3726 suba #0x80 ; set C if we had a positive result
3727 lda #0xa0 ; set exponent to match denormalized result
3728 sta FP0EXP
3729 lda FPA0+3 ; save low byte
3730 sta CHARAC
3731 jmp LBA18 ; go normalize (this will correct for the two's complement representation of negatives)
3732 LBD09 stb FPA0 ; replace mantissa of FPA0 with contents of B
3733 stb FPA0+1
3734 stb FPA0+2
3735 stb FPA0+3
3736 LBD11 rts
3737 ; Convert ASCII string to FP
3738 ; BUG: no overflow is checked on the decimal exponent in exponential notation.
3739 LBD12 ldx ZERO ; zero out FPA0 and temporaries
3740 stx FP0SGN
3741 stx FP0EXP
3742 stx FPA0+1
3743 stx FPA0+2
3744 stx V47
3745 stx V45
3746 bcs LBD86 ; brif input character is numeric
3747 jsr RVEC19 ; do the RAM hook dance
3748 cmpa #'- ; regular negative sign
3749 bne LBD2D ; brif not
3750 com COEFCT ; invert sign
3751 bra LBD31 ; process stuff after the sign
3752 LBD2D cmpa #'+ ; regular plus?
3753 bne LBD35 ; brif not
3754 LBD31 jsr GETNCH ; get character after sign
3755 bcs LBD86 ; brif numeric
3756 LBD35 cmpa #'. ; decimal point?
3757 beq LBD61 ; brif so
3758 cmpa #'E ; scientific notation
3759 bne LBD65 ; brif not
3760 jsr GETNCH ; eat the "E"
3761 bcs LBDA5 ; brif numeric
3762 cmpa #0xac ; negative sign (token)?
3763 beq LBD53 ; brif so
3764 cmpa #'- ; regular negative?
3765 beq LBD53 ; brif so
3766 cmpa #0xab ; plus sign (token)?
3767 beq LBD55 ; brif so
3768 cmpa #'+ ; regular plus?
3769 beq LBD55
3770 bra LBD59 ; brif no sign found
3771 LBD53 com V48 ; set exponent sign to negative
3772 LBD55 jsr GETNCH ; eat the sign
3773 bcs LBDA5 ; brif numeric
3774 LBD59 tst V48 ; is the exponent sign negatvie?
3775 beq LBD65 ; brif not
3776 neg V47 ; negate base 10 exponent
3777 bra LBD65
3778 LBD61 com V46 ; toggle decimal point flag
3779 bne LBD31 ; brif we haven't seen two decimal points
3780 LBD65 lda V47 ; get base 10 exponent
3781 suba V45 ; subtract number of places to the right
3782 sta V47 ; we now have a complete decimal exponent
3783 beq LBD7F ; brif we have no base 10 shifting required
3784 bpl LBD78 ; brif positive exponent
3785 LBD6F jsr LBB82 ; divide FPA0 by 10 (shift decimal point left)
3786 inc V47 ; bump exponent
3787 bne LBD6F ; brif we haven't reached 0 yet
3788 bra LBD7F ; return result
3789 LBD78 jsr LBB6A ; multiply by 10
3790 dec V47 ; downshift the exponent
3791 bne LBD78 ; brif not at 0 yet
3792 LBD7F lda COEFCT ; get desired sign
3793 bpl LBD11 ; brif it will be positive - no need to do anything
3794 jmp LBEE9 ; flip the sign of FPA0
3795 LBD86 ldb V45 ; get the decimal count
3796 subb V46 ; (if decimal seen, will add one; otherwise it does nothing)
3797 stb V45
3798 pshs a ; save new digit
3799 jsr LBB6A ; multiply partial result by 10
3800 puls b ; get back digit
3801 subb #'0 ; remove ASCII bias
3802 bsr LBD99 ; add B to FPA0
3803 bra LBD31 ; go process another digit
3804 LBD99 jsr LBC2F ; save FPA0 to FPA3
3805 jsr LBC7C ; convert B to FP number
3806 ldx #V40 ; point to FPA3
3807 jmp LB9C2 ; add FPA3 and FPA0
3808 LBDA5 ldb V47 ; get exponent value
3809 aslb ; times 2
3810 aslb ; times 4
3811 addb V47 ; times 5
3812 aslb ; times 10
3813 suba #'0 ; remove ASCII bias
3814 pshs b ; save acculated result
3815 adda ,s+ ; add new digit to accumulated result
3816 sta V47 ; save new accumulated decimal exponent
3817 bra LBD55 ; interpret another exponent character
3818 LBDB6 fcb 0x9b,0x3e,0xbc,0x1f,0xfd ; packed FP: 99999999.9
3819 LBDBB fcb 0x9e,0x6e,0x6b,0x27,0xfd ; packed FP: 999999999
3820 LBDC0 fcb 0x9e,0x6e,0x6b,0x28,0x00 ; pakced FP: 1E9
3821 LBDC5 ldx #LABE8-1 ; point to "IN" message
3822 bsr LBDD6 ; output the string
3823 ldd CURLIN ; get basic line number
3824 LBDCC std FPA0 ; save 16 bit unsigned integer
3825 ldb #0x90 ; exponent for upper 16 bits of FPA0 to be an integer
3826 coma ; set C (force normalization to treat as positive)
3827 jsr LBC86 ; zero bottom half, save exponent, and normalize
3828 bsr LBDD9 ; convert FP number to ASCII string
3829 LBDD6 jmp LB99C ; output string
3830 ; Convert FP number to ASCII string
3831 LBDD9 ldu #STRBUF+3 ; point to buffer address that will not cause string to go to string space
3832 LBDDC lda #0x20 ; default sign is a space character
3833 ldb FP0SGN ; get sign of value
3834 bpl LBDE4 ; brif positive
3835 lda #'- ; use negative sign
3836 LBDE4 sta ,u+ ; save sign
3837 stu COEFPT ; save output buffer pointer
3838 sta FP0SGN ; save sign character
3839 lda #'0 ; result is 0 if exponent is 0
3840 ldb FP0EXP ; get exponent
3841 lbeq LBEB8 ; brif FPA0 is 0
3842 clra ; base 10 exponent is 0 for > 1
3843 cmpb #0x80 ; is number > 1?
3844 bhi LBDFF ; brif so
3845 ldx #LBDC0 ; point to 1E+09
3846 jsr LBACA ; shift decimal to the right by 9 spaces
3847 lda #-9 ; account for shift
3848 LBDFF sta V45 ; save base 10 exponent
3849 LBE01 ldx #LBDBB ; point to 999999999
3850 jsr LBCA0 ; are we above that?
3851 bgt LBE18 ; brif so
3852 LBE09 ldx #LBDB6 ; point to 99999999.9
3853 jsr LBCA0 ; are we above that?
3854 bgt LBE1F ; brif in range
3855 jsr LBB6A ; multiply by 10 (we were small)
3856 dec V45 ; account for shift
3857 bra LBE09 ; see if we've come into range
3858 LBE18 jsr LBB82 ; divide by 10
3859 inc V45 ; account for shift
3860 bra LBE01 ; see if we've come into range
3861 LBE1F jsr LB9B4 ; add 0.5 to FPA0 (rounding)
3862 jsr LBCC8 ; do the integer dance
3863 ldb #1 ; default decimal flag (force immediate decimal)
3864 lda V45 ; get base 10 exponent
3865 adda #10 ; account for "unormalized" number
3866 bmi LBE36 ; brif number < 1.0
3867 cmpa #11 ; do we have more than 9 places?
3868 bhs LBE36 ; brif so - do scientific notation
3869 deca
3870 tfr a,b
3871 lda #2 ; force no scientific notation
3872 LBE36 deca ; subtract wo without affecting carry
3873 deca
3874 sta V47 ; save exponent - 0 is do not display in scientific notation
3875 stb V45 ; save number of places to left of decimal
3876 bgt LBE4B ; brif >= 1
3877 ldu COEFPT ; point to string buffer
3878 lda #'. ; put decimal
3879 sta ,u+
3880 tstb ; is there anything to left of decimal?
3881 beq LBE4B ; brif not
3882 lda #'0 ; store a zero
3883 sta ,u+
3884 LBE4B ldx #LBEC5 ; point to powers of 10
3885 ldb #0x80 ; set digit counter to 0x80
3886 LBE50 lda FPA0+3 ; add mantissa to power of 10
3887 adda 3,x
3888 sta FPA0+3
3889 lda FPA0+2
3890 adca 2,x
3891 sta FPA0+2
3892 lda FPA0+1
3893 adca 1,x
3894 sta FPA0+1
3895 lda FPA0
3896 adca ,x
3897 sta FPA0
3898 incb ; add one to digit counter
3899 rorb ; put carry into bit 7
3900 rolb ; set V if carry and sign differ
3901 bvc LBE50 ; brif positive mantissa or carry is 0 and negative mantissa
3902 bcc LBE72 ; brif negative mantissa
3903 subb #10+1 ; take 9's complement if adding mantissa
3904 negb
3905 LBE72 addb #'0-1 ; add ASCII bias
3906 leax 4,x ; move to next power of 10
3907 tfr b,a ; save digit
3908 anda #0x7f ; remove add/subtract flag
3909 sta ,u+ ; put in output
3910 dec V45 ; do we need a decimal yet?
3911 bne LBE84 ; brif not
3912 lda #'. ; put decimal
3913 sta ,u+
3914 LBE84 comb ; toggle bit 7 (add/sub flag)
3915 andb #0x80 ; only keep bit 7
3916 cmpx #LBEC5+9*4 ; done all places?
3917 bne LBE50 ; brif not
3918 LBE8C lda ,-u ; get last character
3919 cmpa #'0 ; was it 0?
3920 beq LBE8C ; brif so
3921 cmpa #'. ; decimal?
3922 bne LBE98 ; brif not
3923 leau -1,u ; move past decimal if it isn't needed
3924 LBE98 lda #'+ ; plus sign
3925 ldb V47 ; get scientific notation exponent
3926 beq LBEBA ; brif not scientific notation
3927 bpl LBEA3 ; brif positive exponent
3928 lda #'- ; negative sign for base 10 exponent
3929 negb ; switch to positive exponent
3930 LBEA3 sta 2,u ; put sign
3931 lda #'E ; put "E"
3932 sta 1,u
3933 lda #'0-1 ; init to ASCII 0 (compensate for INC)
3934 LBEAB inca ; bump digit
3935 subb #10 ; have we hit the correct one yet?
3936 bcc LBEAB ; brif not
3937 addb #'9+1 ; convert units digit to ASCII
3938 std 3,u ; put exponent in output
3939 clr 5,u ; put trailing NUL
3940 bra LBEBC ; go reset pointer
3941 LBEB8 sta ,u ; store last character
3942 LBEBA clr 1,u ; put NUL at the end
3943 LBEBC ldx #STRBUF+3 ; point to start of string
3944 rts
3945 LBEC0 fcb 0x80,0x00,0x00,0x00,0x00 ; packed FP 0.5
3946 LBEC5 fqb -100000000
3947 fqb 10000000
3948 fqb -1000000
3949 fqb 100000
3950 fqb -10000
3951 fqb 1000
3952 fqb -100
3953 fqb 10
3954 fqb -1
3955 LBEE9 lda FP0EXP ; get exponent of FPA0
3956 beq LBEEF ; brif 0 - don't flip sign
3957 com FP0SGN ; flip sign
3958 LBEEF rts
3959 ; Expand a polynomial of the form
3960 ; AQ+BQ^3+CQ^5+DQ^7..... where Q is FPA0 and X points to a table
3961 LBEF0 stx COEFPT ; save coefficient table pointer
3962 jsr LBC2F ; copy FPA0 to FPA3
3963 bsr LBEFC ; multiply FPA3 by FPA0
3964 bsr LBF01 ; expand polynomial
3965 ldx #V40 ; point to FPA3
3966 LBEFC jmp LBACA ; multiply FPA0 by FPA3
3967 LBEFF stx COEFPT ; save coefficient table counter
3968 LBF01 jsr LBC2A ; move FPA0 to FPA4
3969 ldx COEFPT ; get the current coefficient
3970 ldb ,x+ ; get the number of entries
3971 stb COEFCT ; save as counter
3972 stx COEFPT ; save new pointer
3973 LBF0C bsr LBEFC ; multiply (X) and FPA0
3974 ldx COEFPT ; get this coefficient
3975 leax 5,x ; move to next one
3976 stx COEFPT ; save new pointer
3977 jsr LB9C2 ; add (X) to FPA0
3978 ldx #V45 ; point X to FPA4
3979 dec COEFCT ; done all coefficients?
3980 bne LBF0C ; brif more left
3981 rts
3982 ; RND function
3983 RND jsr LBC6D ; set flags on FPA0
3984 bmi LBF45 ; brif negative - set seed
3985 beq LBF3B ; brif 0 - do random between 0 and 1
3986 bsr LBF38 ; convert to integer
3987 jsr LBC2F ; save range value
3988 bsr LBF3B ; get random number
3989 ldx #V40 ; point to FPA3
3990 bsr LBEFC ; multply (X) by FPA0
3991 ldx #LBAC5 ; point to FP 1.0
3992 jsr LB9C2 ; add 1 to FPA0
3993 LBF38 jmp INT ; return integer value
3994 LBF3B ldx RVSEED+1 ; move variable random number seed to FPA0
3995 stx FPA0
3996 ldx RVSEED+3
3997 stx FPA0+2
3998 LBF45 ldx RSEED ; move fixed seed to FPA1
3999 stx FPA1
4000 ldx RSEED+2
4001 stx FPA1+2
4002 jsr LBAD0 ; multiply them
4003 ldd VAD ; get lowest order product bytes
4004 addd #0x658b ; add a constant
4005 std RVSEED+3 ; save it as new seed
4006 std FPA0+2 ; save in result
4007 ldd VAB ; get high order extra product bytes
4008 adcb #0xb0 ; add upper bytes of constant
4009 adca #5
4010 std RVSEED+1 ; save as new seed
4011 std FPA0 ; save as result
4012 clr FP0SGN ; set result to positive
4013 lda #0x80 ; set exponent to 0 < FPA0 < 1
4014 sta FP0EXP
4015 lda FPA2+2 ; get a byte from FPA2
4016 sta FPSBYT ; save as extra precision
4017 jmp LBA1C ; go normalize FPA0
4018 RSEED fqb 0x40e64dab ; constant random number generator seed
4019 ; SIN function
4020 SIN jsr LBC5F ; copy FPA0 to FPA1
4021 ldx #LBFBD ; point to 2*pi
4022 ldb FP1SGN ; get sign of FPA1
4023 jsr LBB89 ; divide FPA0 by 2*pi
4024 jsr LBC5F ; copy FPA0 to FPA1
4025 bsr LBF38 ; convert FPA0 to an integer
4026 clr RESSGN ; set result to positive
4027 lda FP1EXP ; get exponent of FPA1
4028 ldb FP0EXP ; get exponent of FPA0
4029 jsr LB9BC ; subtract FPA0 from FPA1
4030 ldx #LBFC2 ; point to FP 0.25
4031 jsr LB9B9 ; subtract FPA0 from 0.25 (pi/2)
4032 lda FP0SGN ; get result sign
4033 pshs a ; save it
4034 bpl LBFA6 ; brif positive
4035 jsr LB9B4 ; add 0.5 (pi) to FPA0
4036 lda FP0SGN ; get sign of result
4037 bmi LBFA9 ; brif negative
4038 com RELFLG ; if 3pi/2 >= arg >= pi/2
4039 LBFA6 jsr LBEE9 ; flip sign of FPA0
4040 LBFA9 ldx #LBFC2 ; point to 0.25
4041 jsr LB9C2 ; add 0.25 (pi/2) to FPA0
4042 puls a ; get original sign
4043 tsta ; was it positive
4044 bpl LBFB7 ; brif so
4045 jsr LBEE9 ; flip result sign
4046 LBFB7 ldx #LBFC7 ; point to series coefficients
4047 jmp LBEF0 ; go calculate value
4048 LBFBD fcb 0x83,0x49,0x0f,0xda,0xa2 ; 2*pi
4049 LBFC2 fcb 0x7f,0x00,0x00,0x00,0x00 ; 0.25
4050 ; modified taylor series SIN coefficients
4051 LBFC7 fcb 6-1 ; six coefficients
4052 fcb 0x84,0xe6,0x1a,0x2d,0x1b ; -((2pi)^11)/11!
4053 fcb 0x86,0x28,0x07,0xfb,0xf8 ; ((2pi)^9)/9!
4054 fcb 0x87,0x99,0x68,0x89,0x01 ; -((2pi)^7)/7!
4055 fcb 0x87,0x23,0x35,0xdf,0xe1 ; ((2pi)^5)/5!
4056 fcb 0x86,0xa5,0x5d,0xe7,0x28 ; -(2pi)^3)/3!
4057 fcb 0x83,0x49,0x0f,0xda,0xa2 ; 2*pi
4058 ; these 12 bytes are unused
4059 fcb 0xa1,0x54,0x46,0x8f,0x13,0x8f,0x52,0x43
4060 fcb 0x89,0xcd,0xa6,0x81
4061 ; these are the hardware interrupt vectors (coco1/2 only)
4062 fdb SW3VEC
4063 fdb SW2VEC
4064 fdb FRQVEC
4065 fdb IRQVEC
4066 fdb SWIVEC
4067 fdb NMIVEC
4068 fdb RESVEC