comparison bas12.s @ 0:605ff82c4618

Initial check in with cleaned up sources This is the initial check in the source code in a state where it builds byte accurate copies of all the various ROM versions included.
author William Astle <lost@l-w.ca>
date Sat, 08 Dec 2018 19:57:01 -0700
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:605ff82c4618
1 *pragma nolist
2 include defs.s
3 *pragma list
4 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
5 ; COLOR BASIC ROM
6 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
7 org BASIC
8 ; This is the official set of ROM entry points. It is unfortunate that the generic input ("console in") routine is not exposed
9 ; here. It is also unfortunate that no open and close file routines are exposed. This and other oversignts led to a lot of
10 ; software either having to re-invent the wheel or calling directly into the ROM instead of via these official entry points.
11 POLCAT fdb KEYIN ; indirect jump, get a keystroke
12 CHROUT fdb PUTCHR ; indirect jump, output character
13 CSRDON fdb CASON ; indirect jump, turn cassette on and start reading
14 BLKIN fdb GETBLK ; indirect jump, read a block from tape
15 BLKOUT fdb SNDBLK ; indirect jump, write a block to tape
16 JOYIN fdb GETJOY ; indirect jump, read joystick axes
17 WRTLDR fdb WRLDR ; indirect jump, turn cassette on and write a leader
18 ; Initialization code.
19 LA00E lds #LINBUF+LBUFMX+1 ; put the stack in the line input buffer which is a safe place for now
20 lda #0x37 ; enable the cartidge interrupt (to detect autostarting cartridges)
21 sta PIA1+3
22 lda RSTFLG ; get warm start flag
23 cmpa #0x55 ; is it valid?
24 bne BACDST ; brif not - cold start
25 ldx RSTVEC ; get warm start routine pointer
26 lda ,x ; get first byte of the routine
27 cmpa #0x12 ; is it NOP?
28 bne BACDST ; brif not - the routine is invalid so do a cold start
29 jmp ,x ; transfer control to the warm start routine
30 ; RESET/power on comes here
31 RESVEC leay LA00E,pcr ; point to warm start check code
32 LA02A ldx #PIA1 ; point to PIA1 - we're going to rely on the mirroring to reach PIA0
33 clr -3,x ; set PIA0 DA to direction mode
34 clr -1,x ; set PIA0 DB to direction mode
35 clr -4,x ; set PIA0 DA to inputs
36 ldd #0xff34
37 sta -2,x ; set PIA0 DB to outputs
38 stb -3,x ; set PIA0 DA to data mode
39 stb -1,x ; set PIA0 DB to data mode
40 clr 1,x ; set PIA1 DA to direction mode
41 clr 3,x ; set PIA1 DB to direction mode
42 deca
43 sta ,x ; set PIA1 DA bits 7-1 as output, 0 as input
44 lda #0xf8 ; set PIA1 DB bits 7-3 as output, 2-0 as input
45 sta 2,x
46 stb 1,x ; set PIA1 DA to data mode
47 stb 3,x ; set PIA1 DB to data mode
48 clr 2,x ; set VDG to alpha-numeric
49 ldb #2 ; make RS232 marking ("stop" bit)
50 stb ,x
51 ldu #SAMREG ; point to SAM register
52 ldb #16 ; 16 bits to clear
53 LA056 sta ,u++ ; clear a bit
54 decb ; done all?
55 bne LA056 ; brif not
56 sta SAMREG+9 ; put display at 0x400
57 tfr b,dp ; set direct page to 0
58 ldb #4 ; use as a mask to check RAMSZ input
59 sta -2,x ; set RAMSZ strobe high
60 bitb 2,x ; check RAMSZ input
61 beq LA072 ; brif set for 4K RAMs
62 clr -2,x ; set strobe low
63 bitb 2,x ; check input
64 beq LA070 ; brif set for 64K rams
65 leau -2,u ; adjust pointer to set SAM for 16K RAMs
66 LA070 sta -3,u ; program SAM for either 16K or 64K RAMs
67 LA072 jmp ,y ; transfer control to startup routine
68 ; Cold start jumps here
69 BACDST ldx #VIDRAM+1 ; point past the top of the first 1K of memory (for double predec below)
70 LA077 clr ,--x ; clear a byte (last will actually try clearing LSB of RESET vector in ROM)
71 leax 1,x ; move forward one byte (will set Z if we're done)
72 bne LA077 ; brif not donw yet
73 jsr LA928 ; clear the screen
74 clr ,x+ ; put the constant zero that lives before the program
75 stx TXTTAB ; set beginning of program storage
76 LA084 lda 2,x ; get value from memory
77 coma ; make it different
78 sta 2,x ; try putting different into memory
79 cmpa 2,x ; did it matcH?
80 bne LA093 ; brif not - we found the end of memory
81 leax 1,x ; move pointer forward
82 com 1,x ; restore the original memory contents
83 bra LA084 ; try another byte
84 LA093 stx TOPRAM ; save top of memory (one below actual top because we need a byte for VAL() to work)
85 stx MEMSIZ ; save top of string space
86 stx STRTAB ; set bottom of allocated string space
87 leax -200,x ; allocate 200 bytes of string space
88 stx FRETOP ; set top of actually free memory
89 tfr x,s ; put the stack there
90 ldx #LA10D ; point to variable initializer
91 ldu #CMPMID ; point to variables to initialize (first batch)
92 ldb #28 ; 28 bytes in first batch
93 jsr LA59A ; copy bytes to variables
94 ldu #IRQVEC ; point to variables to initialize (second batch)
95 ldb #30 ; 30 bytes this time
96 jsr LA59A ; copy bytes to variables
97 ldx -12,x ; get SN error address
98 stx 3,u ; set ECB's command handlers to error
99 stx 8,u
100 ldx #RVEC0 ; point to RAM vectors
101 ldd #0x394b ; write 75 RTS opcodes (25 RAM vectors)
102 LA0C0 sta ,x+ ; put an RTS
103 decb ; done?
104 bne LA0C0 ; brif not
105 sta LINHDR-1 ; make temporary line header data for line encoding have a nonzero next line pointer
106 jsr LAD19 ; do a "NEW"
107 ldx #'E*256+'X ; magic number to detect ECB ROM
108 cmpx EXBAS ; is there an ECB ROM?
109 lbeq EXBAS+2 ; brif so - launch it
110 andcc #0xaf ; start interrupts
111 ldx #LA147-1 ; point to sign on message
112 jsr LB99C ; print it out
113 ldx #BAWMST ; warm start routine address
114 stx RSTVEC ; set vector there
115 lda #0x55 ; warm start valid flag
116 sta RSTFLG ; mark warm start valid
117 bra LA0F3 ; go to direct mode
118 ; Warm start entry point
119 BAWMST nop ; valid routine marker
120 clr DEVNUM ; reset output/input to screen
121 jsr LAD33 ; do a partial NEW
122 andcc #0xaf ; start interrupts
123 jsr LA928 ; clear the screen
124 LA0F3 jmp LAC73 ; go to direct mode
125 ; FIRQ service routine - this handles starting autostart cartridges
126 BFRQSV tst PIA1+3 ; is it the cartridge interrupt?
127 bmi LA0FC ; brif so
128 rti
129 LA0FC jsr LA7D1 ; delay for a while
130 jsr LA7D1 ; delay for another while
131 leay <LA108,pcr ; point to cartridge starter
132 jmp LA02A ; go initialize everything clean for the cartridge
133 LA108 clr RSTFLG ; force a cold start a cartridge reset
134 jmp ROMPAK ; transfer control to the cartridge
135 ; Variable initializers (first batch)
136 LA10D fcb 18 ; mid band partition of the 1200/2400 Hz period
137 fcb 24 ; upper limit of 1200 Hz period
138 fcb 10 ; upper limit of 2400 Hz period
139 fdb 128 ; number of 0x55s for cassette leader
140 fcb 11 ; cursor blink delay
141 fdb 88 ; 600 baud delay constant
142 fdb 1 ; printer carriage return delay constant
143 fcb 16 ; printer tab field width
144 fcb 112 ; last printer tab zone
145 fcb 132 ; printer carriage width
146 fcb 0 ; printer carriage position
147 fdb LB44A ; default execution address for EXEC
148 inc CHARAD+1 ;* character fetching routines (DP portion) - we first do a two
149 bne LA123 ;* two stage increment of CHARAD then load the value into A
150 inc CHARAD ;* before transferring control to the bottom half routine in ROM
151 LA123 lda >0 ; NOTE: the 0 is a placeholder, extended addressing is required
152 jmp BROMHK
153 ; Variable initializers (second batch)
154 jmp BIRQSV ; IRQ handler
155 jmp BFRQSV ; FIRQ handler
156 jmp LB44A ; default USR() address
157 fcb 0x80,0x4f,0xc7,0x52,0x59 ; random seed
158 fcb 0xff ; capslock flag - default to upper case
159 fdb DEBDEL ; keyboard debounce delay (why is it a variable?)
160 jmp LB277 ; exponentiation handler vector
161 fcb 53 ; (command interpretation table) 53 commands
162 fdb LAA66 ; (command interpretation table) reserved words list (commands)
163 fdb LAB67 ; (command interpretation table) jump table (commands)
164 fcb 20 ; (command interpretation table) 20 functions
165 fdb LAB1A ; (command interpretation table) reserved words list (functions)
166 fdb LAA29 ; (command interpretation table) jump table (functions)
167 ; This is the signon message.
168 LA147 fcc 'COLOR BASIC 1.2'
169 fcb 0x0d
170 fcc '(C) 1982 TANDY'
171 fcb 0
172 ; This is the "invalid colour" CLS easter egg text. Basically 11 wasted bytes
173 LA166 fcc 'MICROSOFT'
174 fcb 0x0d,0
175 ; Read a character from current device and mask off bit 7 (keep it as 7 bit ASCII)
176 LA171 bsr LA176 ; get character
177 anda #0x7f ; mask off high bit
178 rts
179 ; Generic read routine. Reads a character from the device specified by DEVNUM. If no input was available,
180 ; CINBFL will bet nonzero (on EOF). If input was available, CINBFL will be zero. Note that this routine
181 ; has undefined results when called on an output only device. All registers except CC and A are preserved.
182 LA176 jsr RVEC4 ; do RAM hook
183 clr CINBFL ; flag data available
184 tst DEVNUM ; is it keyboard?
185 beq LA1B1 ; brif so - blink cursor and wait for key press
186 tst CINCTR ; is there anything in cassette input buffer?
187 bne LA186 ; brif so
188 com CINBFL ; flag EOF
189 rts
190 ; Read character from cassette file
191 LA186 pshs u,y,x,b ; preserve registers
192 ldx CINPTR ; get input buffer pointer
193 lda ,x+ ; get character from buffer
194 pshs a ; save it for return
195 stx CINPTR ; save new input buffer pointer
196 dec CINCTR ; count character just consumed
197 bne LA197 ; brif buffer is not empty yet
198 jsr LA635 ; go read another block, if any, to refill the buffer
199 LA197 puls a,b,x,y,u,pc ; restore registers and return the character
200 ; Blink the cursor. This might be better timed via an interrupt or something.
201 LA199 dec BLKCNT ; is it time to blink the cursor?
202 bne LA1AB ; brif not
203 ldb #11 ; reset blink timer
204 stb BLKCNT
205 ldx CURPOS ; get cursor position
206 lda ,x ; get character at the cursor
207 adda #0x10 ; move to next color
208 ora #0x8f ; make sure it's a grahpics block with all elements lit
209 sta ,x ; put new cursor block on screen
210 LA1AB ldx #DEBDEL ; we'll use the debounce delay for the cursor blink timer (10ms)
211 LA1AE jmp LA7D3 ; go count X down
212 ; Blink cursor while waiting for a key press
213 LA1B1 pshs x,b ; save registers
214 LA1B3 bsr LA199 ; go do a cursor iteration
215 bsr KEYIN ; go read a key
216 beq LA1B3 ; brif no key pressed
217 ldb #0x60 ; VDG screen space character
218 stb [CURPOS] ; blank cursor out
219 puls b,x,pc ; restore registers and return
220 ; This is the actual keyboard polling routine. Returns 0 if no new key is down. Compared to the 1.0 and 1.1
221 ; ROMs, this routine is quite a lot more compact and robust.
222 LA1C1 clr PIA0+2 ; strobe all columns
223 lda PIA0 ; get rows
224 coma ; bits set if keys down
225 lsla ; remove the comparator input
226 beq LA244 ; brif no keys down - don't actually poll the keyboard
227 KEYIN pshs u,x,b ; save registers
228 ldu #PIA0 ; point to keyboard PIA
229 ldx #KEYBUF ; point to state table
230 clra ; clear carry, set column to 0xff (no strobe)
231 deca ; (note: deca does not affect C)
232 pshs x,a ; save column counter and make a couple of holes for temporaries
233 sta 2,u ; set strobe to no columns
234 LA1D9 rol 2,u ; move to next column (C is 0 initially, 1 after)
235 bcc LA220 ; brif we shifted out a 0 - we've done 8 columns
236 inc 0,s ; bump column counter (first bump goes to 0)
237 bsr LA23A ; read row data
238 sta 1,s ; save key data (for debounce check and later saving)
239 eora ,x ; now bits set if key state changed
240 anda ,x ; now bits are only set if a key has been pressed
241 ldb 1,s ; get new key data
242 stb ,x+ ; save in state table
243 tsta ; was a key down?
244 beq LA1D9 ; brif not - do another (nothing above cleared C)
245 ldb 2,u ; get strobe data
246 stb 2,s ; save it for debounce check
247 ldb #0xf8 ; set up so B is 0 after first add
248 LA1F4 addb #8 ; add 8 for each row
249 lsra ; did we hit the right row?
250 bcc LA1F4 ; brif not
251 addb 0,s ; add in column number
252 beq LA245 ; brif @
253 cmpb #26 ; letter?
254 bhi LA247 ; brif not
255 orb #0x40 ; bias into letter range
256 bsr LA22E ; check for SHIFT
257 ora CASFLG ; merge in capslock state
258 bne LA20C ; brif either capslock or SHIFT - keep upper case
259 orb #0x20 ; move to lower case
260 LA20C stb 0,s ; save ASCII value
261 ldx DEBVAL ; get debounce delay
262 bsr LA1AE ; do the 10ms debounce delay
263 ldb #0xff ; set strobe to none - only joystick buttons register now
264 bsr LA238 ; read keyboard
265 inca ; A now 0 if no buttons down
266 bne LA220 ; brif button down - return nothing since we have interference
267 LA21A ldb 2,s ; get column strobe data
268 bsr LA238 ; read row data
269 cmpa 1,s ; does it match original read?
270 LA220 puls a,x ; clean up stack and get return value
271 bne LA22B ; brif failed debounce or a joystick button down
272 cmpa #0x12 ; is it SHIFT-0?
273 bne LA22C ; brif not
274 com CASFLG ; swap capslock state
275 LA22B clra ; set no key down
276 LA22C puls b,x,u,pc ; restore registers and return
277 LA22E lda #0x7f ; column strobe for SHIFT
278 sta 2,u ; set column
279 lda ,u ; get row data
280 coma ; set if key down
281 anda #0x40 ; only keep SHIFT state
282 rts
283 LA238 stb 2,u ; save strobe data
284 LA23A lda ,u ; get row data
285 ora #0x80 ; mask off comparator so it doesn't interfere
286 tst 2,u ; are we on column 7?
287 bmi LA244 ; brif not
288 ora #0xc0 ; also mask off SHIFT
289 LA244 rts
290 LA245 ldb #51 ; scan code for @
291 LA247 ldx #CONTAB-0x36 ; point to code table
292 cmpb #33 ; arrows, space, zero?
293 blo LA264 ; brif so
294 ldx #CONTAB-0x54 ; adjust to other half of table
295 cmpb #48 ; ENTER, CLEAR, BREAK, @?
296 bhs LA264 ; brif so
297 bsr LA22E ; read shift state
298 cmpb #43 ; is it a number, colon, semicolon?
299 bls LA25D ; brif so
300 eora #0x40 ; invert shift state for others
301 LA25D tsta ; shift down?
302 bne LA20C ; brif not - return result
303 addb #0x10 ; add in offset to shifted character
304 bra LA20C ; go return result
305 LA264 lslb ; two entries per key
306 bsr LA22E ; check SHIFT state
307 beq LA26A ; brif not shift
308 incb ; point to shifted entry
309 LA26A ldb b,x ; get actual key code
310 bra LA20C ; go return result
311 CONTAB fcb 0x5e,0x5f ; <UP> (^, _)
312 fcb 0x0a,0x5b ; <DOWN> (LF, [)
313 fcb 0x08,0x15 ; <LEFT> (BS, ^U)
314 fcb 0x09,0x5d ; <RIGHT> (TAB, ])
315 fcb 0x20,0x20 ; <SPACE>
316 fcb 0x30,0x12 ; <0> (0, ^R)
317 fcb 0x0d,0x0d ; <ENTER> (CR, CR)
318 fcb 0x0c,0x5c ; <CLEAR> (FF, \)
319 fcb 0x03,0x03 ; <BREAK> (^C, ^C)
320 fcb 0x40,0x13 ; <@> (@, ^S)
321 ; Generic output routine.
322 ; Output character in A to the device specified by DEVNUM. All registers are preserved except CC.
323 ; Sending output to a device that does not support output is undefined.
324 PUTCHR jsr RVEC3 ; call RAM hook
325 pshs b ; save B
326 ldb DEVNUM ; get desired device number
327 incb ; set flags (Z for -1, etc.)
328 puls b ; restore B
329 bmi LA2BF ; brif < -1 (line printer)
330 bne LA30A ; brif > -1 (screen)
331 ; Write character to tape file
332 pshs x,b,a ; save registers
333 ldb FILSTA ; get file status
334 decb ; input file?
335 beq LA2A6 ; brif so
336 ldb CINCTR ; get character count
337 incb ; account for this character
338 bne LA29E ; brif buffer not full
339 bsr LA2A8 ; write previously full block to tape
340 LA29E ldx CINPTR ; get output buffer pointer
341 sta ,x+ ; put character in output
342 stx CINPTR ; save new buffer pointer
343 inc CINCTR ; account for this character
344 LA2A6 puls a,b,x,pc ; restore registers and return
345 ; Write a block of data to tape.
346 LA2A8 ldb #1 ; data block type
347 LA2AA stb BLKTYP ; set block type
348 ldx #CASBUF ; point to output buffer
349 stx CBUFAD ; set buffer pointer
350 ldb CINCTR ; get number of bytes in the block
351 stb BLKLEN ; set length to write
352 pshs u,y,a ; save registers
353 jsr LA7E5 ; write a block to tape
354 puls a,y,u ; restore registers
355 jmp LA650 ; reset buffer pointers
356 ; Send byte to line printer
357 LA2BF pshs x,b,a,cc ; save registers and interrupt status
358 orcc #0x50 ; disable interrupts
359 LA2C3 ldb PIA1+2 ; get RS232 status
360 lsrb ; get status to C
361 bcs LA2C3 ; brif busy - loop until not busy
362 bsr LA2FB ; set output to marking
363 clrb ; transmit one start bit
364 bsr LA2FD
365 ldb #8 ; counter for 8 bits
366 LA2D0 pshs b ; save bit count
367 clrb ; zero output bits
368 lsra ; bet output bit to C
369 rolb ; get output bit to correct bit for output byte
370 lslb
371 bsr LA2FD ; transmit bit
372 puls b ; get back bit counter
373 decb ; are we done yet?
374 bne LA2D0 ; brif not
375 bsr LA2FB ; send stop bit (marking)
376 puls cc,a ; restore interrupt status and output character
377 cmpa #0x0d ; carriage return?
378 beq LA2ED ; brif so
379 inc LPTPOS ; bump output position
380 ldb LPTPOS ; get new position
381 cmpb LPTWID ; end of line?
382 blo LA2F3 ; brif not
383 LA2ED clr LPTPOS ; reset position to start of line
384 bsr LA305 ; do carriage return delay
385 bsr LA305
386 LA2F3 ldb PIA1+2 ; get RS232 status
387 lsrb ; get status to C
388 bcs LA2F3 ; brif still busy, keep waiting
389 puls b,x,pc ; restore registers and return
390 LA2FB ldb #2 ; set output to high (marking)
391 LA2FD stb PIA1 ; set RS232 output
392 bsr LA302 ; do baud delay (first iteration) then fall through for second
393 LA302 ldx LPTBTD ; get buard rate delay constant
394 skip2
395 LA305 ldx LPTLND ; get carriage return delay constant
396 jmp LA7D3 ; count X down
397 ; Output character to screen
398 LA30A pshs x,b,a ; save registers
399 ldx CURPOS ; get cursor pointer
400 cmpa #0x08 ; backspace?
401 bne LA31D ; brif not
402 cmpx #VIDRAM ; at top of screen?
403 beq LA35D ; brif so - it's a no-op
404 lda #0x60 ; VDG space character
405 sta ,-x ; put a space at previous location and move pointer back
406 bra LA344 ; save new cursor position and return
407 LA31D cmpa #0x0d ; carriage return?
408 bne LA32F ; brif not
409 ldx CURPOS ; get cursor pointer (why? we already have it)
410 LA323 lda #0x60 ; VDG space character
411 sta ,x+ ; put output space
412 tfr x,d ; see if we at a multiple of 32 now
413 bitb #0x1f
414 bne LA323 ; brif not
415 bra LA344 ; go check for scrolling
416 LA32F cmpa #0x20 ; control character?
417 blo LA35D ; brif so
418 tsta ; is it graphics block?
419 bmi LA342 ; brif so
420 cmpa #0x40 ; number or special?
421 blo LA340 ; brif so (flip "case" bit)
422 cmpa #0x60 ; upper case alpha?
423 blo LA342 ; brif so - keep it unmodified
424 anda #0xdf ; clear bit 5 (inverse video)
425 LA340 eora #0x40 ; flip inverse video bit
426 LA342 sta ,x+ ; output character
427 LA344 stx CURPOS ; save new cursor position
428 cmpx #VIDRAM+511 ; end of screen?
429 bls LA35D ; brif not
430 ldx #VIDRAM ; point to start of screen
431 LA34E ldd 32,x ; get two characters from next row
432 std ,x++ ; put them on this row
433 cmpx #VIDRAM+0x1e0 ; at start of last row on screen?
434 blo LA34E ; brif not
435 ldb #0x60 ; VDG space
436 jsr LA92D ; blank out last line (borrow CLS's loop)
437 LA35D puls a,b,x,pc ; restore registers and return
438 ; Set up device parameters for output
439 LA35F jsr RVEC2 ; do the RAM hook dance
440 pshs x,b,a ; save registers
441 clr PRTDEV ; flag device as a screen
442 lda DEVNUM ; get devicenumber
443 beq LA373 ; brif screen
444 inca ; is it tape?
445 beq LA384 ; brif so
446 ldx LPTCFW ; get tab width and last tab stop for printer
447 ldd LPTWID ; get line width and current position for printer
448 bra LA37C ; set parameters
449 LA373 ldb CURPOS+1 ; get LSB of cursor position
450 andb #0x1f ; now we have the offset into the line
451 ldx #0x1010 ; 16 character tab, position 16 is last tab stop
452 lda #32 ; screen is 32 characters wide
453 LA37C stx DEVCFW ; save tab width and last tab stop for active device
454 stb DEVPOS ; save line position for current device
455 sta DEVWID ; save line width for current device
456 puls a,b,x,pc ; restore registers and return
457 LA384 com PRTDEV ; flag device as non-display
458 ldx #0x0100 ; tab width is 1, last tab field is 0
459 clra ; line width is 0
460 clrb ; character position on line is 0
461 bra LA37C ; go set parameters
462 ; This is the line input routine used for reading lines for Basic, both in immediate mode and for
463 ; INPUT and LINE INPUT. Exit with C set if terminated by BREAK and C clear if terminated by ENTER.
464 ; The actualy entry point is LA390. Note that this routine echoes to *all* devices.
465 LA38D jsr LA928 ; clear screen (CLEAR key handling)
466 LA390 jsr RVEC12 ; do the RAM hook dance
467 clr IKEYIM ; reset cached input character from BREAK check
468 ldx #LINBUF+1 ; point to line input buffer (input pointer)
469 ldb #1 ; Number of characters in line (we start at 1 so BS handling is easier)
470 LA39A jsr LA171 ; get an input character, only keep low 7 bits
471 tst CINBFL ; is it EOF?
472 bne LA3CC ; brif EOF
473 tst DEVNUM ; is it keyboard input?
474 bne LA3C8 ; brif not - don't do line editing
475 cmpa #0x0c ; form feed (CLEAR)?
476 beq LA38D ; brif so - clear screen and reset
477 cmpa #0x08 ; backspace?
478 bne LA3B4 ; brif not
479 decb ; move back one character
480 beq LA390 ; brif we were at the start of the line - reset and start again
481 leax -1,x ; move input pointer back
482 bra LA3E8 ; echo the backspace and continue
483 LA3B4 cmpa #0x15 ; SHIFT-LEFT (kill line)?
484 bne LA3C2 ; brif not
485 LA3B8 decb ; at start of line?
486 beq LA390 ; brif so - reset and restart
487 lda #0x08 ; echo a backspace
488 jsr PUTCHR
489 bra LA3B8 ; see if we've erased everything yet
490 LA3C2 cmpa #0x03 ; BREAK?
491 orcc #1 ; set C if it is (only need Z for the next test
492 beq LA3CD ; brif BREAK - exit
493 LA3C8 cmpa #0x0d ; ENTER (CR)
494 bne LA3D9 ; brif not
495 LA3CC clra ; clear carry (it might not be clear on EOF)
496 LA3CD pshs cc ; save ENTER/BREAK flag
497 jsr LB958 ; echo a carriage return
498 clr ,x ; make sure we have a NUL at the end of the buffer
499 ldx #LINBUF ; point to input buffer
500 puls cc,pc ; restore ENTER/BREAK flag and return
501 LA3D9 cmpa #0x20 ; control character?
502 blo LA39A ; brif so - skip it
503 cmpa #'z+1 ; above z?
504 bhs LA39A ; brif so - ignore it
505 cmpb #LBUFMX ; is the buffer full?
506 bhs LA39A ; brif so - ignore extra characters
507 sta ,x+ ; put character in the buffer
508 incb ; bump character count
509 LA3E8 jsr PUTCHR ; echo character
510 bra LA39A ; go handle next input character
511 ; Check if DEVNUM Is valid for reading. Raise FM error if open but not for reading. NO error if not open.
512 LA3ED jsr RVEC5 ; do the RAM hook dance
513 lda DEVNUM ; get device number
514 beq LA415 ; brif keyboard - always valid
515 inca ; is it tape?
516 bne LA403 ; brif not
517 lda FILSTA ; get tape file status
518 bne LA400 ; brif file is open
519 LA3FB ldb #22*2 ; raise NO error
520 jmp LAC46
521 LA400 deca ; is it in input mode?
522 beq LA415 ; brif so
523 LA403 jmp LA616 ; raise FM error
524 ; Check if DEVNUM is valid for writing. Raise FM error if open but not for writing. NO error if not open.
525 LA406 jsr RVEC6 ; do the RAM hook dance
526 lda DEVNUM ; get device number
527 inca ; is it tape?
528 bne LA415 ; brif not
529 lda FILSTA ; get file status
530 beq LA3FB ; brif not open
531 deca ; is it open for reading?
532 beq LA403 ; brif so - bad mode
533 LA415 rts
534 ; CLOSE command
535 CLOSE beq LA426 ; brif no file specified - close all files
536 jsr LA5A5 ; parse device number
537 LA41B bsr LA42D ; close specified file
538 jsr GETCCH ; is there more?
539 beq LA44B ; brif not
540 jsr LA5A2 ; check for comma and parse another device number
541 bra LA41B ; go close this one
542 ; Close all files handler.
543 LA426 jsr RVEC7 ; Yup. The RAM hook dance.
544 lda #-1 ; start with tape file
545 sta DEVNUM
546 ; Close file specified in DEVNUM. Note that this never fails.
547 LA42D jsr RVEC8 ; You know it. RAM hook.
548 lda DEVNUM ; get device we're closing
549 clr DEVNUM ; reset to screen/keyboard
550 inca ; is it tape?
551 bne LA44B ; brif not
552 lda FILSTA ; get file status
553 cmpa #2 ; is it output?
554 bne LA449 ; brif not
555 lda CINCTR ; is there anything waiting to be written?
556 beq LA444 ; brif not
557 jsr LA2A8 ; write final block of data
558 LA444 ldb #0xff ; write EOF block
559 jsr LA2AA
560 LA449 clr FILSTA ; mark tape file closed
561 LA44B rts
562 ; CSAVE command
563 CSAVE jsr LA578 ; parse filename
564 jsr GETCCH ; see what we have after the file name
565 beq LA469 ; brif none
566 jsr LB26D ; make sure there's a comma
567 ldb #'A ; make sure there's an A after
568 jsr LB26F
569 bne LA44B ; brif not end of line
570 clra ; file type 0 (basic program)
571 jsr LA65C ; write out header block
572 lda #-1 ; set output to tape
573 sta DEVNUM
574 clra ; set Z so we list the whole program
575 jmp LIST ; go list the program to tape
576 LA469 clra ; file type 0 (basic program)
577 ldx ZERO ; set to binary file mode
578 jsr LA65F ; write header block
579 clr FILSTA ; close files
580 inc BLKTYP ; set block type to data
581 jsr WRLDR ; write out a leader
582 ldx TXTTAB ; point to start of program
583 LA478 stx CBUFAD ; set buffer location
584 lda #255 ; block size to 255 bytes (max size)
585 sta BLKLEN
586 ldd VARTAB ; get end of program
587 subd CBUFAD ; how much is left?
588 beq LA491 ; brif we have nothing left
589 cmpd #255 ; do we have a full block worth?
590 bhs LA48C ; brif so
591 stb BLKLEN ; save actual remainder as block length
592 LA48C jsr SNDBLK ; write a block out
593 bra LA478 ; go do another block
594 LA491 neg BLKTYP ; set block type to 0xff (EOF)
595 clr BLKLEN ; no data in EOF block
596 jmp LA7E7 ; write EOF, stop tape, and return
597 ; CLOAD and CLOADM commands
598 CLOAD clr FILSTA ; close tape file
599 cmpa #'M ; is it ClOADM?
600 beq LA4FE ; brif so
601 leas 2,s ; clean up stack
602 jsr LA5C5 ; parse file name
603 jsr LA648 ; go find the file
604 tst CASBUF+10 ; is it binary?
605 beq LA4C8 ; brif so
606 lda CASBUF+9 ; is it ASCII?
607 beq LA4CD ; brif not
608 jsr LAD19 ; clear out existing program
609 lda #-1 ; set up for reading from tape
610 sta DEVNUM
611 inc FILSTA ; set tape file to input
612 jsr LA635 ; go read first block
613 jmp LAC7C ; go to immediate mode to read in the program
614 ; This is the EOF handler for immediate mode. It's rather assinine for this to be located here. It is
615 ; probably an artifact of a substantially different code layout prior to compacting the ROM to fit in
616 ; 8K.
617 LA4BF jsr RVEC13 ; do the RAM hook dance
618 jsr LA42D ; close file
619 jmp LAC73 ; go back to immediate mode
620 LA4C8 lda CASBUF+8 ; get file type
621 beq LA4D0 ; brif basic program
622 LA4CD jmp LA616 ; raise FM error
623 LA4D0 jsr LAD19 ; erase existing program
624 jsr CASON ; start reading tape
625 ldx TXTTAB ; get start of program storage
626 LA4D8 stx CBUFAD ; set load address for block
627 ldd CBUFAD ; get start of block
628 inca ; bump by 256
629 jsr LAC37 ; check if there's room for a maximum sized block of 255
630 jsr GETBLK ; go read a block
631 bne LA4F8 ; brif there was an error during reading
632 lda BLKTYP ; get type of block read
633 beq LA4F8 ; brif header block - IO error
634 bpl LA4D8 ; brif data block - read another
635 stx VARTAB ; save new end of program
636 bsr LA53B ; stop tape
637 ldx #LABED-1 ; point to "OK" prompt
638 jsr LB99C ; show prompt
639 jmp LACE9 ; reset various things and return
640 LA4F8 jsr LAD19 ; clear out partial program load
641 LA4FB jmp LA619 ; raise IO error
642 ; This is the CLOADM command
643 LA4FE jsr GETNCH ; eat the "M"
644 bsr LA578 ; parse file name
645 jsr LA648 ; go find the file
646 LA505 ldx ZERO ; default offset is 0
647 jsr GETCCH ; see if there's something after the file name
648 beq LA511 ; brif no offset
649 jsr LB26D ; make sure there's a comma
650 jsr LB73D ; evaluate offset to X
651 LA511 lda CASBUF+8 ; get file mode
652 cmpa #2 ; M/L program?
653 bne LA4CD ; brif not - FM error
654 ldd CASBUF+11 ; get load address
655 leau D,x ; add in offset
656 stu EXECJP ; set EXEC default address
657 tst CASBUF+10 ; is it binary?
658 bne LA4CD ; brif not
659 ldd CASBUF+13 ; get load address
660 leax d,x ; add in offset
661 stx CBUFAD ; set buffer address for loading
662 jsr CASON ; start up tape
663 LA52E jsr GETBLK ; read a block
664 bne LA4FB ; brif error reading
665 stx CBUFAD ; save new load address
666 tst BLKTYP ; set flags on block type
667 beq LA4FB ; brif another header - IO error
668 bpl LA52E ; brif it was data - read more
669 LA53B jmp LA7E9 ; turn off tape and return
670 ; The EXEC command
671 EXEC beq LA545 ; brif no argument - use default address
672 jsr LB73D ; evaluate EXEC address to X
673 stx EXECJP ; set new default EXEC address
674 LA545 jmp [EXECJP] ; transfer control to execution address
675 ; Break check for LIST so it doesn't interrupt ASCII saves. Why is this here instead of with the rest of the break
676 ; check logic or packaged up with LIST?
677 LA549 jsr RVEC11 ; do the RAM hook dance
678 lda DEVNUM ; get device number
679 inca ; is it tape?
680 beq LA5A1 ; brif so - don't do break check
681 jmp LADEB ; do the actual break check
682 ; Evaluate an expression and make sure it is within the limits of the screen and sets the cursor position.
683 ; This really should be located with the PRINT command.
684 LA554 jsr LB3E4 ; evaluate a positive expression to D
685 subd #511 ; is it within bounds?
686 lbhi LB44A ; brif not - error out
687 addd #VIDRAM+511 ; adjust to be within the screen (and undo the SUBD above)
688 std CURPOS ; set cursor position
689 rts
690 ; INKEY$ function
691 INKEY lda IKEYIM ; was a key down during break check?
692 bne LA56B ; brif so
693 jsr KEYIN ; poll the keyboard
694 LA56B clr IKEYIM ; reset the break check cache
695 sta FPA0+3 ; store result for later return
696 lbne LB68F ; brif a key was down - return it as a string
697 sta STRDES ; set string length to 0 (no key down)
698 jmp LB69B ; return the NULL string
699 ; Parse a filename
700 LA578 ldx #CFNBUF ; point to file name buffer
701 clr ,x+ ; zero out file name length
702 lda #0x20 ; space character to initialize file name
703 LA57F sta ,x+ ; put a space in the buffer
704 cmpx #CASBUF ; at end of file name?
705 bne LA57F ; brif not
706 jsr GETCCH ; get input character
707 beq LA5A1 ; brif no name present
708 jsr LB156 ; evaluate the file name expression
709 jsr LB654 ; point to start of the file name
710 ldu #CFNBUF ; point to file name buffer
711 stb ,u+ ; save string length
712 beq LA5A1 ; brif empty - we're done
713 skip2
714 LA598 ldb #8 ; copy 8 bytes
715 ; Move B bytes from (X) to (U)
716 LA59A lda ,x+ ; copy a byte
717 sta ,u+
718 decb ; done yet?
719 bne LA59A ; brif not
720 LA5A1 rts
721 ; Parse a device number and check validity
722 LA5A2 jsr LB26D ; check for comma and SN error if not
723 LA5A5 cmpa #'# ; do we have a #?
724 bne LA5AB ; brif not (it's optional)
725 jsr GETNCH ; munch the #
726 LA5AB jsr LB141 ; evaluate the expression
727 LA5AE jsr INTCNV ; convert it to an integer in D
728 rolb ; move sign of B into C
729 adca #0 ; add sign of B to A
730 bne LA61F ; brif A doesn't match the sign of B
731 rorb ; restore B (ADCA will have set C if B was negative)
732 stb DEVNUM ; set device number
733 jsr RVEC1 ; do the RAM hook dance
734 beq LA5C4 ; brif device number set to screen/keyboard (valid)
735 bpl LA61F ; brif not negative (not valid)
736 cmpb #-2 ; is it printer or tape?
737 blt LA61F ; brif not (not valid)
738 LA5C4 rts
739 ; Read file name from the line and do an error if anything follows it
740 LA5C5 bsr LA578 ; parse file name
741 jsr GETCCH ; set flags on current character
742 LA5C9 beq LA5C4 ; brif nothing there - it's good
743 jmp LB277 ; raise SN error
744 ; EOF functoin
745 EOF jsr RVEC14 ; do the RAM hook dance
746 lda DEVNUM ; get device number
747 pshs a ; save it (so we can restore it later)
748 bsr LA5AE ; check the device number (which is in FPA0)
749 jsr LA3ED ; check validity for reading
750 LA5DA clrb ; not EOF = 0 (FALSE)
751 lda DEVNUM ; get device number
752 beq LA5E4 ; brif keyboard - never EOF
753 tst CINCTR ; is there anything in the input buffer?
754 bne LA5E4 ; brif so - not EOF
755 comb ; set EOF flag to -1 (true)
756 LA5E4 puls a ; get back original device
757 sta DEVNUM ; restore it
758 LA5E8 sex ; sign extend result to 16 bits
759 jmp GIVABF ; go return the result
760 ; SKIPF command
761 SKIPF bsr LA5C5 ; parse file name
762 bsr LA648 ; look for the file
763 jsr LA6D1 ; read the file
764 bne LA619 ; brif error reading file
765 rts
766 ; OPEN command
767 OPEN jsr RVEC0 ; do the RAM hook dance
768 jsr LB156 ; get file status (input/output)
769 jsr LB6A4 ; get first character of status string
770 pshs b ; save status
771 bsr LA5A2 ; parse a comma then the device number
772 jsr LB26D ; make sure there's a comma
773 bsr LA5C5 ; parse the file name
774 lda DEVNUM ; get device number of the file
775 clr DEVNUM ; reset actual device to the screen
776 puls b ; get back status
777 cmpb #'I ; INPUT?
778 beq LA624 ; brif so - open a file for INPUT
779 cmpb #'O ; OUTPUT?
780 beq LA658 ; brif so - open a file for OUTPUT
781 LA616 ldb #21*2 ; raise FM error
782 skip2
783 LA619 ldb #20*2 ; raise I/O error
784 skip2
785 LA61C ldb #18*2 ; raise AO error
786 skip2
787 LA61F ldb #19*2 ; raise DN error
788 jmp LAC46
789 LA624 inca ; are we opening the tape?
790 bmi LA616 ; brif printer - FM error; printer can't be opened for READ
791 bne LA657 ; brif screen - screen is always open
792 bsr LA648 ; read header block
793 lda CASBUF+9 ; clear A if binary or machine language file
794 anda CASBUF+10
795 beq LA616 ; bad file mode if not data file
796 inc FILSTA ; open file for input
797 LA635 jsr LA701 ; start tape, read block
798 bne LA619 ; brif error during read
799 tst BLKTYP ; check block type
800 beq LA619 ; brif header block - something's wrong
801 bmi LA657 ; brif EOF
802 lda BLKLEN ; get length of block
803 beq LA635 ; brif empty block - read another
804 LA644 sta CINCTR ; set buffer count
805 bra LA652 ; reset buffer pointer
806 LA648 tst FILSTA ; is the file open?
807 bne LA61C ; brif so - AO error
808 bsr LA681 ; search for file
809 bne LA619 ; brif error on read
810 LA650 clr CINCTR ; mark buffer empty
811 LA652 ldx #CASBUF ; set buffer pointer to start of buffer
812 stx CINPTR
813 LA657 rts
814 LA658 inca ; check for tape device
815 bne LA657 ; brif not tape (nothing doing - it's always open)
816 inca ; make file type 1
817 LA65C ldx #0xffff ; ASCII and data mode
818 LA65F tst FILSTA ; is file open?
819 bne LA61C ; brif so - raise error
820 ldu #CASBUF ; point to tape buffer
821 stu CBUFAD ; set address of block to write
822 sta 8,u ; set file type
823 stx 9,u ; set ASCII flag and mode
824 ldx #CFNBUF+1 ; point to file name
825 jsr LA598 ; move file name to the tape buffer
826 clr BLKTYP ; set for header block
827 lda #15 ; 15 bytes in a header block
828 sta BLKLEN ; set block length
829 jsr LA7E5 ; write the block
830 lda #2 ; set file type to output
831 sta FILSTA
832 bra LA650 ; reset file pointers
833 ; Search for correct cassette file name
834 LA681 ldx #CASBUF ; point to cassette buffer
835 stx CBUFAD ; set location to read blocks to
836 LA686 lda CURLIN ; are we in immediate mode?
837 inca
838 bne LA696 ; brif not
839 jsr LA928 ; clear screen
840 ldx CURPOS ; get start of screen (set after clear)
841 ldb #'S ; for "searching"
842 stb ,x++ ; put it on the screen
843 stx CURPOS ; save cursor position to be one past the search indicator
844 LA696 bsr LA701 ; read a block
845 orb BLKTYP ; merge error flag with block type
846 bne LA6D0 ; brif error or not header
847 ldx #CASBUF ; point to block just read
848 ldu #CFNBUF+1 ; point to the desired name
849 ldb #8 ; compare 8 characters
850 clr ,-s ; set flag to "match"
851 LA6A6 lda ,x+ ; get character from just read block
852 ldy CURLIN ; immediate mode?
853 leay 1,y
854 bne LA6B4 ; brif not
855 clr DEVNUM ; set output to screen
856 jsr PUTCHR ; display character
857 LA6B4 suba ,u+ ; subtract from desired file name (nonzero if no match)
858 ora ,s ; merge with match flag
859 sta ,s ; save new match flag (will be nonzero if any character differs)
860 decb ; done all characters?
861 bne LA6A6 ; brif not - do another
862 lda ,s+ ; get match flag (and set flags)
863 beq LA6CB ; brif we have a match
864 tst -9,u ; did we actually have a file name or will any file do?
865 beq LA6CB ; brif any file will do
866 bsr LA6D1 ; go read past the file
867 bne LA6D0 ; return on error
868 bra LA686 ; keep looking
869 LA6CB lda #'F ; for "found"
870 bsr LA6F8 ; put "F" on screen
871 clra ; set Z to indicat eno errors
872 LA6D0 rts
873 LA6D1 tst CASBUF+10 ; check type of file
874 bne LA6DF ; brif "blocked" file
875 jsr CASON ; turn on tape
876 LA6D9 bsr GETBLK ; read a block
877 bsr LA6E5 ; error or EOF?
878 bra LA6D9 ; read another block
879 LA6DF bsr LA701 ; read a single block
880 bsr LA6E5 ; error or EOF?
881 bra LA6DF ; read another block
882 LA6E5 bne LA6ED ; got error reading block
883 lda BLKTYP ; check block type
884 nega ; A is 0 now if EOF
885 bmi LA700 ; brif not end of file
886 deca ; clear error indicator
887 LA6ED sta CSRERR ; set error flag
888 leas 2,s ; don't return to original caller
889 bra LA705 ; turn off motor and return
890 LA6F3 lda VIDRAM ; get first char on screen
891 eora #0x40 ; flip case
892 LA6F8 ldb CURLIN ; immediate mode?
893 incb
894 bne LA700 ; brif not
895 sta VIDRAM ; save flipped case character
896 LA700 rts
897 ; Read a single block from tape (for a "blocked" file)
898 LA701 bsr CASON ; start tape going
899 bsr GETBLK ; read block
900 LA705 jsr LA7E9 ; stop tape
901 ldb CSRERR ; get error status
902 rts
903 ; Read a block from tape - this does the heavy lifting
904 GETBLK orcc #0x50 ; disable interrupts (timing is important)
905 bsr LA6F3 ; reverse video of upper left character in direct mode
906 ldx CBUFAD ; point to destination buffer
907 clra ; reset read byte
908 LA712 bsr LA755 ; read a bit
909 rora ; move bit into accumulator
910 cmpa #0x3c ; have we synched on the start of the block data yet?
911 bne LA712 ; brif not
912 bsr LA749 ; read block type
913 sta BLKTYP
914 bsr LA749 ; get block size
915 sta BLKLEN
916 adda BLKTYP ; accumulate checksum
917 sta CCKSUM ; save current checksum
918 lda BLKLEN ; get back count
919 sta CSRERR ; initialize counter; we use this since it will be ovewritten later anyway
920 beq LA73B ; brif empty block
921 LA72B bsr LA749 ; read a byte
922 sta ,x ; save in buffer
923 cmpa ,x+ ; make sure it wrote
924 bne LA744 ; brif error if it didn't match
925 adda CCKSUM ; accumulate checksum
926 sta CCKSUM
927 dec CSRERR ; read all bytes?
928 bne LA72B ; brif not
929 LA73B bsr LA749 ; read checksum from tape
930 suba CCKSUM ; does it match?
931 beq LA746 ; brif so
932 lda #1 ; checksum error flag
933 skip2
934 LA744 lda #2 ; non-RAM error flag
935 LA746 sta CSRERR ; save error status
936 rts
937 LA749 lda #8 ; read 8 bits
938 sta CPULWD ; initialize counter
939 LA74D bsr LA755 ; read a bit
940 rora ; put it into accumulator
941 dec CPULWD ; got all 8 bits?
942 bne LA74D ; brif not
943 rts
944 LA755 bsr LA75D ; get time between transitions
945 ldb CPERTM ; get timer
946 decb
947 cmpb CMPMID ; set C if timer is below the transition point - high or 1; clear otherwise
948 rts
949 LA75D clr CPERTM ; reset timer
950 tst CBTPHA ; check which phase we synched on
951 bne LA773 ; brif HI-LO synch
952 LA763 bsr LA76C ; read input
953 bcs LA763 ; brif still high
954 LA767 bsr LA76C ; read input
955 bcc LA767 ; brif still low
956 rts
957 LA76C inc CPERTM ; bump timer
958 ldb PIA1 ; get input bit to C
959 rorb
960 rts
961 LA773 bsr LA76C ; read input
962 bcc LA773 ; brif still low
963 LA777 bsr LA76C ; read output
964 bcs LA777 ; brif still high
965 rts
966 ; Start tape and look for sync bytes
967 CASON orcc #0x50 ; disable interrupts
968 bsr LA7CA ; turn on tape
969 clr CPULWD ; reset timer
970 LA782 bsr LA763 ; wait for low-high transition
971 LA784 bsr LA7AD ; wait for it to go low again
972 bhi LA797 ; brif in range for 1200 Hz
973 LA788 bsr LA7A7 ; wait for it to go high again
974 blo LA79B ; brif in range for 2400 Hz
975 dec CPULWD ; decrement counter (synched on low-high)
976 lda CPULWD ; get counter
977 cmpa #-96 ; have we seen 96 1-0-1-0 patterns (48 0x55s)?
978 LA792 bne LA782 ; brif not - wait some more
979 sta CBTPHA ; save phase we synched on
980 rts
981 LA797 bsr LA7A7 ; wait for it to go high again
982 bhi LA784 ; brif another 1200 Hz, 2 in a row, try again
983 LA79B bsr LA7AD ; wait for it to go low again
984 blo LA788 ; brif another 2400 Hz; go try again for high
985 inc CPULWD ; bump counter
986 lda CPULWD ; get counter
987 suba #96 ; set 0 if we've seen enought 0-1-0-1 patterns (0xaa)
988 bra LA792 ; set phase and return or keep waiting
989 LA7A7 clr CPERTM ; reset period timer
990 bsr LA767 ; wait for high
991 bra LA7B1 ; set flags on result
992 LA7AD clr CPERTM ; reset period timer
993 bsr LA777 ; wait for low
994 LA7B1 ldb CPERTM ; get period count
995 cmpb CMP0 ; is it too long for 1200Hz?
996 bhi LA7BA ; brif so - reset counts
997 cmpb CMP1 ; set C if 2400Hz, clear C if 1200 Hz
998 rts
999 LA7BA clr CPULWD ; reset sync counter (too slow or drop out)
1000 rts
1001 ; MOTOR command
1002 MOTOR tfr a,b ; save ON/OFF
1003 jsr GETNCH ; eat the ON/OFF token
1004 cmpb #0xaa ; OFF?
1005 beq LA7E9 ; brif so - turn off tape
1006 cmpb #0x88 ; ON?
1007 jsr LA5C9 ; SN error if no match
1008 ; Turn on tape
1009 LA7CA lda PIA1+1 ; get motor control value
1010 ora #8 ; turn on bit 3 (starts motor)
1011 bsr LA7F0 ; put it back (dumb but it saves a byte)
1012 LA7D1 ldx ZERO ; maximum delay timer
1013 LA7D3 leax -1,x ; count down
1014 bne LA7D3 ; brif not at 0 yet
1015 rts
1016 ; Write a synch leader to tape
1017 WRLDR orcc #0x50 ; disable interrupts
1018 bsr LA7CA ; turn on tape
1019 ldx SYNCLN ; get count of 0x55s to write
1020 LA7DE bsr LA828 ; write a 0x55
1021 leax -1,x ; done?
1022 bne LA7DE ; brif not
1023 rts
1024 ; Write sync bytes and a block, then stop tape
1025 LA7E5 bsr WRLDR ; write sync
1026 LA7E7 bsr SNDBLK ; write block
1027 ; Turn off tape
1028 LA7E9 andcc #0xaf ; enable interrupts
1029 lda PIA1+1 ; get control register
1030 anda #0xf7 ; disable motor bit
1031 LA7F0 sta PIA1+1 ; set motor enable bit
1032 rts
1033 ; Write a block to tape.
1034 SNDBLK orcc #0x50 ; disable interrupts
1035 ldb BLKLEN ; get block size
1036 stb CSRERR ; initialize character counter
1037 lda BLKLEN ; initialize checksum
1038 beq LA805 ; brif empty block
1039 ldx CBUFAD ; point to tape buffer
1040 LA800 adda ,x+ ; accumulate checksum
1041 decb ; end of block data?
1042 bne LA800 ; brif not
1043 LA805 adda BLKTYP ; accumulate block type into checksum
1044 sta CCKSUM ; save calculated checksum
1045 ldx CBUFAD ; point to buffer
1046 bsr LA828 ; send a 0x55
1047 lda #0x3c ; and then a 0x3c
1048 bsr LA82A
1049 lda BLKTYP ; send block type
1050 bsr LA82A
1051 lda BLKLEN ; send block size
1052 bsr LA82A
1053 tsta ; empty block?
1054 beq LA824 ; brif so
1055 LA81C lda ,x+ ; send character from block data
1056 bsr LA82A
1057 dec CSRERR ; are we done yet?
1058 bne LA81C ; brif not
1059 LA824 lda CCKSUM ; send checksum
1060 bsr LA82A
1061 LA828 lda #0x55 ; send a 0x55
1062 LA82A pshs a ; save output byte
1063 ldb #1 ; initialize bit probe
1064 LA82E lda CLSTSN ; get ending value of last cycle
1065 sta PIA1 ; set DA
1066 ldy #LA85C ; point to sine wave table
1067 bitb ,s ; is bit set?
1068 bne LA848 ; brif so - do high frequency
1069 LA83B lda ,y+ ; get next sample (use all for low frequency)
1070 cmpy #LA85C+36 ; end of table?
1071 beq LA855 ; brif so
1072 sta PIA1 ; set output sample
1073 bra LA83B ; do another sample
1074 LA848 lda ,y++ ; get next sample (use every other for high frequency)
1075 cmpy #LA85C+36 ; end of table?
1076 beq LA855 ; brif so
1077 sta PIA1 ; send output sample
1078 bra LA848 ; do another sample
1079 LA855 sta CLSTSN ; save last sample that *would* have been sent
1080 lslb ; shift mask to next bit
1081 bcc LA82E ; brif not done all 8 bits
1082 puls a,pc ; get back original character and return
1083 ; This is the sample table for the tape sine wave
1084 LA85C fcb 0x82,0x92,0xaa,0xba,0xca,0xda
1085 fcb 0xea,0xf2,0xfa,0xfa,0xfa,0xf2
1086 fcb 0xea,0xda,0xca,0xba,0xaa,0x92
1087 fcb 0x7a,0x6a,0x52,0x42,0x32,0x22
1088 fcb 0x12,0x0a,0x02,0x02,0x02,0x0a
1089 fcb 0x12,0x22,0x32,0x42,0x52,0x6a
1090 ; SET command
1091 SET bsr LA8C1 ; get absolute screen position of graphics block
1092 pshs x ; save character location
1093 jsr LB738 ; evaluate comma then expression in B
1094 puls x ; get back character pointer
1095 cmpb #8 ; valid colour?
1096 bhi LA8D5 ; brif not
1097 decb ; normalize colours
1098 bmi LA895 ; brif colour 0 (use current colour)
1099 lda #0x10 ; 16 patterns per colour
1100 mul
1101 bra LA89D ; go save the colour
1102 LA895 ldb ,x ; get current value
1103 bpl LA89C ; brif not grahpic
1104 andb #0x70 ; keep only the colour
1105 skip1
1106 LA89C clrb ; reset block to all black
1107 LA89D pshs b ; save colour
1108 bsr LA90D ; force a )
1109 lda ,x ; get current screen value
1110 bmi LA8A6 ; brif graphic block already
1111 clra ; force all pixels off
1112 LA8A6 anda #0x0f ; keep only pixel data
1113 ora GRBLOK ; set the desired pixel
1114 ora ,s+ ; merge with desired colour
1115 LA8AC ora #0x80 ; force it to be a graphic block
1116 sta ,x ; put new block on screen
1117 rts
1118 ; RESET command
1119 RESET bsr LA8C1 ; get address of desired block
1120 bsr LA90D ; force a )
1121 clra ; zero block (no pixels)
1122 ldb ,x ; is it graphics?
1123 bpl LA8AC ; brif not - just blank the block
1124 com GRBLOK ; invert pixel data
1125 andb GRBLOK ; turn off the desired pixel
1126 stb ,x ; put new pixel data on screen
1127 rts
1128 ; Parse SET/RESET/POINT coordinates except for closing )
1129 LA8C1 jsr LB26A ; make sure it starts with (
1130 LA8C4 jsr RVEC21 ; do the RAM hook dance
1131 jsr LB70B ; get first coordinate
1132 cmpb #63 ; valid horizontal coordinate
1133 bhi LA8D5 ; brif out of range
1134 pshs b ; save horizontal coordinate
1135 jsr LB738 ; look for , followed by vertical coordinate
1136 cmpb #31 ; in range for vertical?
1137 LA8D5 bhi LA948 ; brif not
1138 pshs b ; save vertical coordinate
1139 lsrb ; divide by two (two blocks per row)
1140 lda #32 ; 32 bytes per row
1141 mul ; now we have the offset into video RAM
1142 ldx #VIDRAM ; point to start of screen
1143 leax d,x ; now X points to the correct character row
1144 ldb 1,s ; get horizontal coordinate
1145 lsrb ; divide by two (two per character cell)
1146 abx ; now we're pointing to the correct character cell
1147 puls a,b ; get back coordinates (vertical in A)
1148 anda #1 ; keep only row offset of vertical
1149 rorb ; get column offset of horizontal to C
1150 rola ; now we have "row * 2 + col" in A
1151 ldb #0x10 ; make a bit mask (one bit left of first pixel)
1152 LA8EE lsrb ; move mask right
1153 deca ; at the right pixel?
1154 bpl LA8EE ; brif not
1155 stb GRBLOK ; save graphics block mask
1156 rts
1157 ; POINT function
1158 POINT bsr LA8C4 ; evaluate coordinates
1159 ldb #0xff ; default colour value is -1 (not graphics)
1160 lda ,x ; get character
1161 bpl LA90A ; brif not graphics
1162 anda GRBLOK ; is desired pixel set?
1163 beq LA909 ; brif not - return 0 for "black"
1164 ldb ,x ; get graphics data
1165 lsrb ; shift right 4 to get colour in low bits
1166 lsrb
1167 lsrb
1168 lsrb
1169 andb #7 ; lose the graphics block bias
1170 LA909 incb ; shift colours into 1 to 8 range
1171 LA90A jsr LA5E8 ; convert B to floating point
1172 LA90D jmp LB267 ; make sure we have a ) and return
1173 ; CLS command
1174 CLS jsr RVEC22 ; do the RAM hook dance
1175 LA913 beq LA928 ; brif no colour - just do a basic screen clear
1176 jsr LB70B ; evaluate colour number
1177 cmpb #8 ; valid colour?
1178 bhi LA937 ; brif not - do the easter egg
1179 tstb ; color 0?
1180 beq LA925 ; brif so
1181 decb ; normalize to 0 based colour numbers
1182 lda #0x10 ; 16 blocks per colour
1183 mul ; now we have the base code for that colour
1184 orb #0x0f ; set all pixels
1185 LA925 orb #0x80 ; make it a graphics block
1186 skip2
1187 LA928 ldb #0x60 ; VDG screen space character
1188 ldx #VIDRAM ; point to start of screen
1189 LA92D stx CURPOS ; set cursor position
1190 LA92F stb ,x+ ; blank a character
1191 cmpx #VIDRAM+511 ; end of screen?
1192 bls LA92F ; brif not
1193 rts
1194 LA937 bsr LA928 ; clear te screen
1195 ldx #LA166-1 ; point to the easter egg
1196 jmp LB99C ; go display it
1197 ; Evaluate an expression to B, prefixed by a comma, and do FC error if 0
1198 LA93F jsr LB26D ; force a comma
1199 LA942 jsr LB70B ; evaluate expression to B
1200 tstb ; is it 0?
1201 bne LA984 ; brif not - return
1202 LA948 jmp LB44A ; raise FC error
1203 ; SOUND command
1204 SOUND bsr LA942 ; evaluate frequency
1205 stb SNDTON ; save it
1206 bsr LA93F ; evaluate duration (after a comma)
1207 LA951 lda #4 ; constant factor for duration (each increment is 1/15 of a second)
1208 mul
1209 std SNDDUR ; save length of sound (IRQ will count it down)
1210 lda PIA0+3 ; enable 60 Hz interrupt
1211 ora #1
1212 sta PIA0+3
1213 clr ARYDIS ; clear array disable flag for some reason
1214 bsr LA9A2 ; connect DAC to MUX output
1215 bsr LA976 ; turn on sound
1216 LA964 bsr LA985 ; store mid range output value and delay
1217 lda #0xfe ; store high value and delay
1218 bsr LA987
1219 bsr LA985 ; store mid range value and delay
1220 lda #2 ; store low value and delay
1221 bsr LA987
1222 ldx SNDDUR ; has timer expired?
1223 bne LA964 ; brif not, do another wave
1224 ; Disable sound output
1225 LA974 clra ; bit 3 to 0 will disable output
1226 skip2
1227 ; Enable sound output
1228 LA976 lda #8 ; bit 3 set to enable output
1229 sta ,-s ; save desired value
1230 lda PIA1+3 ; get control register value
1231 anda #0xf7 ; reset value
1232 ora ,s+ ; set to desired value
1233 sta PIA1+3 ; set new sound output status
1234 LA984 rts
1235 LA985 lda #0x7e ; mid range value for DAC
1236 LA987 sta PIA1 ; set DAC output value
1237 lda SNDTON ; get frequency
1238 LA98C inca ; increment it (gives shorter count with higher values, so higher frequencies work)
1239 bne LA98C ; brif not done yet
1240 rts
1241 ; AUDIO command
1242 AUDIO tfr a,b ; save ON/OFF token
1243 jsr GETNCH ; munch the ON/OFF token
1244 cmpb #0xaa ; OFF?
1245 beq LA974 ; brif so
1246 subb #0x88 ; ON?
1247 jsr LA5C9 ; do SN error if not
1248 incb ; now B is 1 - cassette sound source
1249 bsr LA9A2 ; set MUX input to tape
1250 bra LA976 ; enable sound
1251 ; Set MUX source to value in B
1252 LA9A2 ldu #PIA0+1 ; point to PIA0 control register A
1253 bsr LA9A7 ; program bit 0 then fall through for bit 1
1254 LA9A7 lda ,u ; get control register value
1255 anda #0xf7 ; reset mux control bit
1256 asrb ; shift desired value to C
1257 bcc LA9B0 ; brif this bit is clear
1258 ora #8 ; set the bit
1259 LA9B0 sta ,u++ ; set register value and move to next register
1260 rts
1261 ; IRQ service routine
1262 BIRQSV lda PIA0+3 ; check for VSYNC interrupt
1263 bpl LA9C5 ; brif not - return. BUG: should clear HSYNC interrupt status first
1264 lda PIA0+2 ; clear VSYNC interrupt status
1265 ldx >SNDDUR ; are we counting down for SOUND? (force extended in case DP is modified)
1266 beq LA9C5 ; brif not
1267 leax -1,x ; count down one tick
1268 stx >SNDDUR ; save new count (forced extended in case DP is modified)
1269 LA9C5 rti
1270 ; JOYSTK function
1271 JOYSTK jsr LB70E ; evaluate which joystick axis is desired
1272 cmpb #3 ; valid axis?
1273 lbhi LB44A ; brif not
1274 tstb ; want axis 0?
1275 bne LA9D4 ; brif not
1276 bsr GETJOY ; read axis data if axis 0
1277 LA9D4 ldx #POTVAL ; point to axis values
1278 ldb FPA0+3 ; get desired axis
1279 ldb b,x ; get axis value
1280 jmp LB4F3 ; return value
1281 ; Read all four joystick axes. Note that this routine will try 10 times to get a value that matches
1282 ; the value obtained during the *previous call to this routine*. Thus, if the axis value has changed,
1283 ; this routine will do the read *ten times* before just returning the last value. This is assininely
1284 ; slow and probably a bug since it seems more logical to look for two matching reads in a row. Note
1285 ; also that this routine should be using PSHS and PULS but it doesn't.
1286 GETJOY bsr LA974 ; turn off sound
1287 ldx #POTVAL+4 ; point to the end of the axis data (we'll work backwards)
1288 ldb #3 ; start with axis 3
1289 LA9E5 lda #10 ; 10 tries to see if we match *the last call* to this routine
1290 std ,--s ; save retry counter and axis number
1291 bsr LA9A2 ; set MUX for the correct axis
1292 LA9EB ldd #0x4080 ; set initial trial value to mid range and the next difference to add/subtract to half
1293 LA9EE sta ,-s ; store the add/subtract value
1294 orb #2 ; keep rs232 output marking
1295 stb PIA1 ; set DAC output to the trial value
1296 eorb #2 ; remove RS232 output value
1297 lda PIA0 ; read the comparator
1298 bmi LA9FF ; brif comparator output is high (DAC is lower than the axis value)
1299 subb ,s ; subtract next bit value (split the difference toward 0)
1300 skip2
1301 LA9FF addb ,s ; add next bit value (split the different toward infinity)
1302 lda ,s+ ; get bit value back
1303 lsra ; cut in half
1304 cmpa #1 ; have we done that last value for the DAC?
1305 bne LA9EE ; brif not
1306 lsrb ; normalize the axis value
1307 lsrb
1308 cmpb -1,x ; does it match the read from the last call to this routine?
1309 beq LAA12 ; brif so
1310 dec ,s ; are we out of retries?
1311 bne LA9EB ; brif not - try again
1312 LAA12 stb ,-x ; save new value and move pointer back
1313 ldd ,s++ ; get axis counter and clean up retry counter
1314 decb ; move to next axis
1315 bpl LA9E5 ; brif still more axes to do
1316 rts
1317 ; This is the "bottom half" of the character fetching routines.
1318 BROMHK cmpa #'9+1 ; is it >= colon?
1319 bhs LAA28 ; brif so Z set if colon, C clear.
1320 cmpa #0x20 ; space?
1321 bne LAA24 ; brif not
1322 jmp GETNCH ; move on to another character if space
1323 LAA24 suba #'0 ; normalize ascii digit to 0-9; we already handled above digit 9
1324 suba #-'0 ; this will cause a carry for any value that was already positive
1325 LAA28 rts
1326 ; Jump table for functions
1327 LAA29 fdb SGN ; SGN 0x80
1328 fdb INT ; INT 0x81
1329 fdb ABS ; ABS 0x82
1330 fdb USRJMP ; USR 0x83
1331 fdb RND ; RND 0x84
1332 fdb SIN ; SIN 0x85
1333 fdb PEEK ; PEEK 0x86
1334 fdb LEN ; LEN 0x87
1335 fdb STR ; STR$ 0x88
1336 fdb VAL ; VAL 0x89
1337 fdb ASC ; ASC 0x8a
1338 fdb CHR ; CHR$ 0x8b
1339 fdb EOF ; EOF 0x8c
1340 fdb JOYSTK ; JOYSTK 0x8d
1341 fdb LEFT ; LEFT$ 0x8e
1342 fdb RIGHT ; RIGHT$ 0x8f
1343 fdb MID ; MID$ 0x90
1344 fdb POINT ; POINT 0x91
1345 fdb INKEY ; INKEY$ 0x92
1346 fdb MEM ; MEM 0x93
1347 ; Operator precedence and jump table (binary ops except relational)
1348 LAA51 fcb 0x79 ; +
1349 fdb LB9C5
1350 fcb 0x79 ; -
1351 fdb LB9BC
1352 fcb 0x7b ; *
1353 fdb LBACC
1354 fcb 0x7b ; /
1355 fdb LBB91
1356 fcb 0x7f ; ^ (exponentiation)
1357 fdb EXPJMP
1358 fcb 0x50 ; AND
1359 fdb LB2D5
1360 fcb 0x46 ; OR
1361 fdb LB2D4
1362 ; Reserved words table for commands
1363 LAA66 fcs 'FOR' ; 0x80
1364 fcs 'GO' ; 0x81
1365 fcs 'REM' ; 0x82
1366 fcs "'" ; 0x83
1367 fcs 'ELSE' ; 0x84
1368 fcs 'IF' ; 0x85
1369 fcs 'DATA' ; 0x86
1370 fcs 'PRINT' ; 0x87
1371 fcs 'ON' ; 0x88
1372 fcs 'INPUT' ; 0x89
1373 fcs 'END' ; 0x8a
1374 fcs 'NEXT' ; 0x8b
1375 fcs 'DIM' ; 0x8c
1376 fcs 'READ' ; 0x8d
1377 fcs 'RUN' ; 0x8e
1378 fcs 'RESTORE' ; 0x8f
1379 fcs 'RETURN' ; 0x90
1380 fcs 'STOP' ; 0x91
1381 fcs 'POKE' ; 0x92
1382 fcs 'CONT' ; 0x93
1383 fcs 'LIST' ; 0x94
1384 fcs 'CLEAR' ; 0x95
1385 fcs 'NEW' ; 0x96
1386 fcs 'CLOAD' ; 0x97
1387 fcs 'CSAVE' ; 0x98
1388 fcs 'OPEN' ; 0x99
1389 fcs 'CLOSE' ; 0x9a
1390 fcs 'LLIST' ; 0x9b
1391 fcs 'SET' ; 0x9c
1392 fcs 'RESET' ; 0x9d
1393 fcs 'CLS' ; 0x9e
1394 fcs 'MOTOR' ; 0x9f
1395 fcs 'SOUND' ; 0xa0
1396 fcs 'AUDIO' ; 0xa1
1397 fcs 'EXEC' ; 0xa2
1398 fcs 'SKIPF' ; 0xa3
1399 fcs 'TAB(' ; 0xa4
1400 fcs 'TO' ; 0xa5
1401 fcs 'SUB' ; 0xa6
1402 fcs 'THEN' ; 0xa7
1403 fcs 'NOT' ; 0xa8
1404 fcs 'STEP' ; 0xa9
1405 fcs 'OFF' ; 0xaa
1406 fcs '+' ; 0xab
1407 fcs '-' ; 0xac
1408 fcs '*' ; 0xad
1409 fcs '/' ; 0xae
1410 fcs '^' ; 0xaf
1411 fcs 'AND' ; 0xb0
1412 fcs 'OR' ; 0xb1
1413 fcs '>' ; 0xb2
1414 fcs '=' ; 0xb3
1415 fcs '<' ; 0xb4
1416 ; Reserved word list for functions
1417 LAB1A fcs 'SGN' ; 0x80
1418 fcs 'INT' ; 0x81
1419 fcs 'ABS' ; 0x82
1420 fcs 'USR' ; 0x83
1421 fcs 'RND' ; 0x84
1422 fcs 'SIN' ; 0x85
1423 fcs 'PEEK' ; 0x86
1424 fcs 'LEN' ; 0x87
1425 fcs 'STR$' ; 0x88
1426 fcs 'VAL' ; 0x89
1427 fcs 'ASC' ; 0x8a
1428 fcs 'CHR$' ; 0x8b
1429 fcs 'EOF' ; 0x8c
1430 fcs 'JOYSTK' ; 0x8d
1431 fcs 'LEFT$' ; 0x8e
1432 fcs 'RIGHT$' ; 0x8f
1433 fcs 'MID$' ; 0x90
1434 fcs 'POINT' ; 0x91
1435 fcs 'INKEY$' ; 0x92
1436 fcs 'MEM' ; 0x93
1437 ; Jump table for commands
1438 LAB67 fdb FOR ; 0x80 FOR
1439 fdb GO ; 0x81 GO
1440 fdb REM ; 0x82 REM
1441 fdb REM ; 0x83 '
1442 fdb REM ; 0x84 ELSE
1443 fdb IFTOK ; 0x85 IF
1444 fdb DATA ; 0x86 DATA
1445 fdb PRINT ; 0x87 PRINT
1446 fdb ON ; 0x88 ON
1447 fdb INPUT ; 0x89 INPUT
1448 fdb ENDTOK ; 0x8a END
1449 fdb NEXT ; 0x8b NEXT
1450 fdb DIM ; 0x8c DIM
1451 fdb READ ; 0x8d READ
1452 fdb RUN ; 0x8e RUN
1453 fdb RESTOR ; 0x8f RESTORE
1454 fdb RETURN ; 0x90 RETURN
1455 fdb STOP ; 0x91 STOP
1456 fdb POKE ; 0x92 POKE
1457 fdb CONT ; 0x93 CONT
1458 fdb LIST ; 0x94 LIST
1459 fdb CLEAR ; 0x95 CLEAR
1460 fdb NEW ; 0x96 NEW
1461 fdb CLOAD ; 0x97 CLOAD
1462 fdb CSAVE ; 0x98 CSAVE
1463 fdb OPEN ; 0x99 OPEN
1464 fdb CLOSE ; 0x9a CLOSE
1465 fdb LLIST ; 0x9b LLIST
1466 fdb SET ; 0x9c SET
1467 fdb RESET ; 0x9d RESET
1468 fdb CLS ; 0x9e CLS
1469 fdb MOTOR ; 0x9f MOTOR
1470 fdb SOUND ; 0xa0 SOUND
1471 fdb AUDIO ; 0xa1 AUDIO
1472 fdb EXEC ; 0xa2 EXEC
1473 fdb SKIPF ; 0xa3 SKIPF
1474 ; Error message table
1475 LABAF fcc 'NF' ; 0 NEXT without FOR
1476 fcc 'SN' ; 1 Syntax error
1477 fcc 'RG' ; 2 RETURN without GOSUB
1478 fcc 'OD' ; 3 Out of data
1479 fcc 'FC' ; 4 Illegal function call
1480 fcc 'OV' ; 5 Overflow
1481 fcc 'OM' ; 6 Out of memory
1482 fcc 'UL' ; 7 Undefined line number
1483 fcc 'BS' ; 8 Bad subscript
1484 fcc 'DD' ; 9 Redimensioned array
1485 fcc '/0' ; 10 Division by 0
1486 fcc 'ID' ; 11 Illegal direct statement
1487 fcc 'TM' ; 12 Type mismatch
1488 fcc 'OS' ; 13 Out of string space
1489 fcc 'LS' ; 14 String too long
1490 fcc 'ST' ; 15 String formula too complex
1491 fcc 'CN' ; 16 Can't continue
1492 fcc 'FD' ; 17 Bad file data
1493 fcc 'AO' ; 18 File already open
1494 fcc 'DN' ; 19 Device number error
1495 fcc 'IO' ; 20 Input/output error
1496 fcc 'FM' ; 21 Bad file mode
1497 fcc 'NO' ; 22 File not open
1498 fcc 'IE' ; 23 Input past end of file
1499 fcc 'DS' ; 24 Direct statement in file
1500 LABE1 fcn ' ERROR'
1501 LABE8 fcn ' IN '
1502 LABED fcb 0x0d
1503 LABEE fcc 'OK'
1504 fcb 0x0d,0x00
1505 LABF2 fcb 0x0d
1506 fcn 'BREAK'
1507 ; Search stack for a FOR/NEXT stack frame. Stop search when something that isn't a FOR/NEXT
1508 ; stack frame is found. Enter with the index variable descriptor pointer in VARDES, or NULL
1509 ; for the first match.
1510 ;
1511 ; NOTE: this routine can be reworked to avoid needed two temporaries by taking advantage of the
1512 ; 6809's registers. This requires some minor tweaks where the routine is called. Further, the
1513 ; use of B is completely pointless and, even if B is going to be used, why is it reloaded on
1514 ; every loop?
1515 LABF9 leax 4,s ; skip past our caller and the main command loop return address
1516 LABFB ldb #18 ; each FOR/NEXT frame is 18 bytes
1517 stx TEMPTR ; save current search pointer
1518 lda ,x ; get first byte of this frame
1519 suba #0x80 ; set to 0 if FOR/NEXT
1520 bne LAC1A ; brif not FOR/NEXT (we hit the end of the stack for a GOSUB frame)
1521 ldx 1,x ; get index variable descriptor
1522 stx TMPTR1 ; save it
1523 ldx VARDES ; get desired index descriptor
1524 beq LAC16 ; brif NULL - we found something
1525 cmpx TMPTR1 ; does this one match?
1526 beq LAC1A ; brif so
1527 ldx TEMPTR ; get back frame pointer
1528 abx ; move to next entry
1529 bra LABFB ; check next block of data
1530 LAC16 ldx TMPTR1 ; get index variable of this frame
1531 stx VARDES ; set it as the one found
1532 LAC1A ldx TEMPTR ; get matching frame pointer
1533 tsta ; set Z if FOR/NEXT
1534 rts
1535 ; This is a block copy routine which copies from top to bottom. It's not clear that the use of
1536 ; this routine actually saves any ROM space compared to just implementing the copies directly
1537 ; once all the marshalling to set up the parameter variables is taken into account.
1538 LAC1E bsr LAC37 ; check to see if stack collides with D
1539 LAC20 ldu V41 ; point to destination
1540 leau 1,u ; offset for pre-dec
1541 ldx V43 ; point to source
1542 leax 1,x ; offset for pre-dec
1543 LAC28 lda ,-x ; get source byte
1544 pshu a ; store at destination (sta ,-u would be less weird)
1545 cmpx V47 ; at the bottom of the copy?
1546 bne LAC28 ; brif not
1547 stu V45 ; save final destination address
1548 LAC32 rts
1549 ; Check for 2*B (0 <= B <= 127) bytes for free memory
1550 LAC33 clra ; zero extend
1551 aslb ; times 2 (loses bit 7 of B)
1552 addd ARYEND ; add to top of used memory
1553 LAC37 addd #STKBUF ; add a fudge factor for interpreter operation
1554 bcs LAC44 ; brif >65535!
1555 sts BOTSTK ; get current stack pointer
1556 cmpd BOTSTK ; is our new address above that?
1557 blo LAC32 ; brif not - no error
1558 LAC44 ldb #6*2 ; raise OM error
1559 ; The error servicing routine
1560 LAC46 jsr RVEC16 ; do the RAM hook dance (ON ERROR reserved hook)
1561 LAC49 jsr RVEC17 ; do the RAM hook dance again
1562 jsr LA7E9 ; turn off tape
1563 jsr LA974 ; disable sound
1564 jsr LAD33 ; reset stack, etc.
1565 clr DEVNUM ; reset output to screen
1566 jsr LB95C ; do a newline
1567 jsr LB9AF ; send a ?
1568 ldx #LABAF ; point to error table
1569 abx ; offset to correct message
1570 bsr LACA0 ; send a char from X
1571 bsr LACA0 ; send another char from X
1572 ldx #LABE1-1 ; point to "ERROR" message
1573 LAC68 jsr LB99C ; print ERROR message (or BREAK)
1574 lda CURLIN ; are we in immediate mode?
1575 inca
1576 beq LAC73 ; brif not - go to immediate mode
1577 jsr LBDC5 ; print "IN ****"
1578 ; This is the immediate mode loop
1579 LAC73 jsr LB95C ; do a newline if needed
1580 LAC76 ldx #LABEE-1 ; point to prompt (without leading CR)
1581 jsr LB99C ; show prompt
1582 LAC7C jsr LA390 ; read an input line
1583 ldu #0xffff ; flag immediate mode
1584 stu CURLIN
1585 bcs LAC7C ; brif we ended on BREAK - just go for another line
1586 tst CINBFL ; EOF?
1587 lbne LA4BF ; brif so
1588 stx CHARAD ; save start of input line as input pointer
1589 jsr GETNCH ; get character from input line
1590 beq LAC7C ; brif no input
1591 bcs LACA5 ; brif numeric - adding or removing a line number
1592 ldb #2*24 ; code for "direct statement in file"
1593 tst DEVNUM ; keyboard input?
1594 bne LAC46 ; brif not - complain about direct statement
1595 jsr LB821 ; go tokenize the input line
1596 jmp LADC0 ; go execute the newly tokenized line
1597 LACA0 lda ,x+ ; get character and advance pointer
1598 jmp LB9B1 ; output it
1599 LACA5 jsr LAF67 ; convert line number to binary
1600 ldx BINVAL ; get converted number
1601 stx LINHDR ; put it before the line we just read
1602 jsr LB821 ; tokenize the input line
1603 stb TMPLOC ; save line length
1604 bsr LAD01 ; find where the line should be in the program
1605 bcs LACC8 ; brif the line number isn't already present
1606 ldd V47 ; get address where the line is in the program
1607 subd ,x ; get the difference between here and the end of the line (negative)
1608 addd VARTAB ; subtract line length from the end of the program
1609 std VARTAB ; save new end of program address
1610 ldu ,x ; get start of next line
1611 LACC0 pulu a ; get source byte (lda ,u+ would be less weird)
1612 sta ,x+ ; move it down
1613 cmpx VARTAB ; have we moved everything yet?
1614 bne LACC0 ; brif not
1615 LACC8 lda LINBUF ; see if there is actually a line to input
1616 beq LACE9 ; brif not - we just needed to remove the line
1617 ldd VARTAB ; get current end of program
1618 std V43 ; set as source pointer
1619 addb TMPLOC ; add in the length of the new line
1620 adca #0
1621 std V41 ; save destination pointer
1622 jsr LAC1E ; make sure there's enough room and then make a hole for the new line
1623 ldu #LINHDR-2 ; point to the line (well, 4 bytes before it, incl line number and fake next line pointer)
1624 LACDD pulu a ; get byte from new line (lda ,u+ would be less weird)
1625 sta ,x+ ; stow it
1626 cmpx V45 ; at the end of the hole we just made?
1627 bne LACDD ; brif not
1628 ldx V41 ; get save new top of program address
1629 stx VARTAB
1630 LACE9 bsr LAD21 ; reset variables, etc.
1631 bsr LACEF ; adjust next line pointers
1632 bra LAC7C ; go read another input line
1633 ; Recompute next line pointers
1634 LACEF ldx TXTTAB ; point to start of program
1635 LACF1 ldd ,x ; get address of next line
1636 beq LAD16 ; brif end of program
1637 leau 4,x ; move past pointer and line number
1638 LACF7 lda ,u+ ; are we at the end of the line?
1639 bne LACF7 ; brif not
1640 stu ,x ; save new next line pointer
1641 ldx ,x ; point to next line
1642 bra LACF1 ; process the next line
1643 ; Find a line in the program
1644 LAD01 ldd BINVAL ; get desired line number
1645 ldx TXTTAB ; point to start of program
1646 LAD05 ldu ,x ; get address of next line
1647 beq LAD12 ; brif end of program
1648 cmpd 2,x ; do we have a match?
1649 bls LAD14 ; brif our search number is <= the number here
1650 ldx ,x ; move to next line
1651 bra LAD05 ; check another line
1652 LAD12 orcc #1 ; set C for not found
1653 LAD14 stx V47 ; save address of matching line *or* line just after where it would have been
1654 LAD16 rts
1655 ; NEW command
1656 ; This routine has multiple entry points used for various "levels" of NEW
1657 NEW bne LAD14 ; brif there was input given; should be LAD16!
1658 LAD19 ldx TXTTAB ; point to start of program
1659 clr ,x+ ; blank out program (with NULL next line pointer)
1660 clr ,x+
1661 stx VARTAB ; save end of program
1662 LAD21 ldx TXTTAB ; get start of program
1663 jsr LAEBB ; put input pointer there
1664 LAD26 ldx MEMSIZ ; reset string space
1665 stx STRTAB
1666 jsr RESTOR ; reset DATA pointer
1667 ldx VARTAB ; clear out scalars and arrays
1668 stx ARYTAB
1669 stx ARYEND
1670 LAD33 ldx #STRSTK ; reset the string stack
1671 stx TEMPPT
1672 ldx ,s ; get return address (we're going to reset the stack)
1673 lds FRETOP ; reset the stack to top of memory
1674 clr ,-s ; put stopper so FOR/NEXT search will actually stop here
1675 clr OLDPTR ; reset "CONT" state
1676 clr OLDPTR+1
1677 clr ARYDIS ; un-disable arrays
1678 jmp ,x ; return to original caller
1679 ; FOR command
1680 FOR lda #0x80 ; disable array parsing
1681 sta ARYDIS
1682 jsr LET ; assign start value to index
1683 jsr LABF9 ; search stack for matching FOR/NEXT frame
1684 leas 2,s ; lose return address
1685 bne LAD59 ; brif variable not already being used
1686 ldx TEMPTR ; get address of matched data
1687 leas b,x ; move stack pointer to the end of it (B is set to 18 in the stack search)
1688 LAD59 ldb #9 ; is there room for 18 bytes in memory?
1689 jsr LAC33
1690 jsr LAEE8 ; get address of the end of this statement in X
1691 ldd CURLIN ; get line number
1692 pshs x,b,a ; save next line address and current line number
1693 ldb #0xa5 ; make sure we have TO
1694 jsr LB26F
1695 jsr LB143 ; make sure we have a numeric index
1696 jsr LB141 ; evaluate terminal condition value
1697 ldb FP0SGN ; pack FPA0 in place
1698 orb #0x7f
1699 andb FPA0
1700 stb FPA0
1701 ldy #LAD7F ; where to come back to
1702 jmp LB1EA ; stash terminal condition on the stack
1703 LAD7F ldx #LBAC5 ; point to FP 1.0 (default step)
1704 jsr LBC14 ; unpack it to FPA0
1705 jsr GETCCH ; get character after the terminal
1706 cmpa #0xa9 ; is it STEP?
1707 bne LAD90 ; brif not
1708 jsr GETNCH ; eat STEP
1709 jsr LB141 ; evaluate step condition
1710 LAD90 jsr LBC6D ; get "status" of FPA0
1711 jsr LB1E6 ; stash FPA0 on the stack (for step value)
1712 ldd VARDES ; get variable descriptor pointer
1713 pshs d ; put that on the stack too
1714 lda #0x80 ; flag the frame as a FOR/NEXT frame
1715 pshs a
1716 ; Main command interpretation loop
1717 LAD9E jsr RVEC20 ; do the RAM hook dance
1718 andcc #0xaf ; make sure interrupts are running
1719 bsr LADEB ; check for BREAK/pause
1720 ldx CHARAD ; get input pointer
1721 stx TINPTR ; save input pointer for start of line
1722 lda ,x+ ; get current input character
1723 beq LADB4 ; brif end of line - move to another line
1724 cmpa #': ; end of statement?
1725 beq LADC0 ; brif so - keep processing
1726 LADB1 jmp LB277 ; raise a syntax error
1727 LADB4 lda ,x++ ; get MSB of next line pointer and skip past pointer
1728 sta ENDFLG
1729 beq LAE15 ; brif MSB of next line address is 0 (do END)
1730 ldd ,x+ ; get line number but only advance one
1731 std CURLIN ; set current line number
1732 stx CHARAD ; set input pointer to one before line text
1733 LADC0 jsr GETNCH ; move past statement separator or to first character in line
1734 bsr LADC6 ; process a command
1735 bra LAD9E ; handle next statement or line
1736 LADC6 beq LAE40 ; return if end of statement
1737 tsta ; is it a token?
1738 lbpl LET ; brif not - do a LET
1739 cmpa #0xa3 ; above SKIPF?
1740 bhi LADDC ; brif so
1741 ldx COMVEC+3 ; point to jump table
1742 lsla ; two bytes per entry (loses the token bias)
1743 tfr a,b ; put it in B for unsigned ABX
1744 abx
1745 jsr GETNCH ; move past token
1746 jmp [,x] ; transfer control to the handler (which will return to the main loop)
1747 LADDC cmpa #0xb4 ; is it a non-executable token?
1748 bls LADB1 ; brif so
1749 jmp [COMVEC+13] ; transfer control to ECB command handler
1750 ; RESTORE command
1751 RESTOR ldx TXTTAB ; point to beginning of the program
1752 leax -1,x ; move back one (to compensate for "GETNCH")
1753 LADE8 stx DATPTR ; save as new data pointer
1754 rts
1755 ; BREAK check
1756 LADEB jsr LA1C1 ; read keyboard
1757 beq LADFA ; brif no key down
1758 LADF0 cmpa #3 ; BREAK?
1759 beq STOP ; brif so - do a STOP
1760 cmpa #0x13 ; pause (SHIFT-@)?
1761 beq LADFB ; brif so
1762 sta IKEYIM ; cache key for later INKEY$ so break check doesn't break INKEY$
1763 LADFA rts
1764 LADFB jsr KEYIN ; read keyboard
1765 beq LADFB ; brif no key down
1766 bra LADF0 ; process pressed key in case BREAK or SHIFT-@ again
1767 ; END command
1768 ENDTOK jsr LA426 ; close files
1769 jsr GETCCH ; re-get input character
1770 bra LAE0B
1771 ; STOP command
1772 STOP orcc #1 ; flag "STOP"
1773 LAE0B bne LAE40 ; brif not end of statement
1774 ldx CHARAD ; save current input pointer
1775 stx TINPTR
1776 LAE11 ror ENDFLG ; save END/STOP flag (C)
1777 leas 2,s ; lose return address
1778 LAE15 ldx CURLIN ; get current input line (end of program comes here)
1779 cmpx #0xffff ; immediate mode?
1780 beq LAE22 ; brif so
1781 stx OLDTXT ; save line where we stopped executing
1782 ldx TINPTR ; get input pointer
1783 stx OLDPTR ; save location where we stopped executing
1784 LAE22 clr DEVNUM ; reset to screen/keyboard
1785 ldx #LABF2-1 ; point to BREAK message
1786 tst ENDFLG ; are we doing "BREAK"?
1787 lbpl LAC73 ; brif not
1788 jmp LAC68 ; go do the BREAK message and return to main loop
1789 ; CONT command
1790 CONT bne LAE40 ; brif not end of statement
1791 ldb #2*16 ; code for can't continue
1792 ldx OLDPTR ; get saved execution pointer
1793 lbeq LAC46 ; brif no saved pointer - raise CN error
1794 stx CHARAD ; reset input pointer
1795 ldx OLDTXT ; reset current line number
1796 stx CURLIN
1797 LAE40 rts
1798 ; CLEAR command
1799 CLEAR beq LAE6F ; brif no argument
1800 jsr LB3E6 ; evaluate string space size
1801 pshs d ; save it
1802 ldx MEMSIZ ; get memory size (top of memory)
1803 jsr GETCCH ; is there anything after the string space size?
1804 beq LAE5A ; brif not
1805 jsr LB26D ; force a comma
1806 jsr LB73D ; get top of memory value in X
1807 leax -1,x ; move back one (top of cleared space)
1808 cmpx TOPRAM ; is it within the memory available?
1809 bhi LAE72 ; brif higher than top of memory - OM error
1810 LAE5A tfr x,d ; so we can do math for checking memory usage
1811 subd ,s++ ; subtract out string space value
1812 bcs LAE72 ; brif less than 0
1813 tfr d,u ; U is bottom of cleared space
1814 subd #STKBUF ; also account for slop space
1815 bcs LAE72 ; brif less than 0
1816 subd VARTAB ; is there still room for the program?
1817 blo LAE72 ; brif not
1818 stu FRETOP ; set top of free memory
1819 stx MEMSIZ ; set size of usable memory
1820 LAE6F jmp LAD26 ; erase variables, etc.
1821 LAE72 jmp LAC44 ; raise OM error
1822 ; RUN command
1823 RUN jsr RVEC18 ; do the RAM hook dance
1824 jsr LA426 ; close any open files
1825 jsr GETCCH ; is there a line number
1826 lbeq LAD21 ; brif no line number - start from beginning
1827 jsr LAD26 ; clear variables, etc.
1828 bra LAE9F ; "GOTO" the line number
1829 ; GO command (GOTO and GOSUB)
1830 GO tfr a,b ; save TO/SUB
1831 LAE88 jsr GETNCH ; eat the TO/SUB token
1832 cmpb #0xa5 ; TO?
1833 beq LAEA4 ; brif GOTO
1834 cmpb #0xa6 ; SUB?
1835 bne LAED7 ; brif not
1836 ldb #3 ; room for 6 bytes?
1837 jsr LAC33
1838 ldu CHARAD ; get input pointer
1839 ldx CURLIN ; get line number
1840 lda #0xa6 ; flag for GOSUB frame
1841 pshs u,x,a ; set stack frame
1842 LAE9F bsr LAEA4 ; do "GOTO"
1843 jmp LAD9E ; go back to main loop
1844 ; Actual GOTO is here
1845 LAEA4 jsr GETCCH ; get current input
1846 jsr LAF67 ; convert number to binary
1847 bsr LAEEB ; move input pointer to end of statement
1848 leax 1,x ; point to start of next line
1849 ldd BINVAL ; get desired line number
1850 cmpd CURLIN ; is it beyond here?
1851 bhi LAEB6 ; brif so
1852 ldx TXTTAB ; start search at beginning of program
1853 LAEB6 jsr LAD05 ; find line number
1854 bcs LAED2 ; brif not found
1855 LAEBB leax -1,x ; move to just before start of line
1856 stx CHARAD ; reset input pointer
1857 LAEBF rts
1858 ; RETURN command
1859 RETURN bne LAEBF ; exit if argument given
1860 lda #0xff ; set VARDES to an illegal value so we ignore FOR frames
1861 sta VARDES
1862 jsr LABF9 ; look for a GOSUB frame
1863 tfr x,s ; reset stack
1864 cmpa #0xa6-0x80 ; is it a GOSUB frame?
1865 beq LAEDA ; brif so
1866 ldb #2*2 ; code for RETURN without GOSUB
1867 skip2
1868 LAED2 ldb #7*2 ; code for undefined line number
1869 jmp LAC46 ; raise error
1870 LAED7 jmp LB277 ; raise syntax error
1871 LAEDA puls a,x,u ; get back saved line number and input pointer
1872 stx CURLIN ; reset line number
1873 stu CHARAD ; reset input pointer
1874 ; DATA command
1875 DATA bsr LAEE8 ; move input pointer to end of statement
1876 skip2
1877 ; REM command (also ELSE)
1878 REM bsr LAEEB ; move input pointer to end of line
1879 stx CHARAD ; save new input pointer
1880 LAEE7 rts
1881 ; Return end of statement (LAEE8) or line (AEEB) in X
1882 LAEE8 ldb #': ; colon is statement terminator
1883 skip1lda
1884 LAEEB clrb ; make main terminator NUL
1885 stb CHARAC ; save terminator
1886 clrb ; end of line - always terminates
1887 ldx CHARAD ; get input pointer
1888 LAEF1 tfr b,a ; save secondary terminator
1889 ldb CHARAC ; get main terminator
1890 sta CHARAC ; save secondary
1891 LAEF7 lda ,x ; get input character
1892 beq LAEE7 ; brif end of line
1893 pshs b ; save terminator
1894 cmpa ,s+ ; does it match?
1895 beq LAEE7 ; brif so - bail
1896 leax 1,x ; move pointer ahead
1897 cmpa #'" ; start of string?
1898 beq LAEF1 ; brif so
1899 inca ; functon token?
1900 bne LAF0C ; brif not
1901 leax 1,x ; skip second part of function token
1902 LAF0C cmpa #0x85+1 ; IF?
1903 bne LAEF7 ; brif not
1904 inc IFCTR ; bump "IF" count
1905 bra LAEF7 ; get check another input character
1906 ; IF command
1907 IFTOK jsr LB141 ; evaluate condition
1908 jsr GETCCH ; find out what's after the conditin
1909 cmpa #0x81 ; GO?
1910 beq LAF22 ; treat same as THEN
1911 ldb #0xa7 ; make sure we have a THEN
1912 jsr LB26F
1913 LAF22 lda FP0EXP ; get true/false (false is 0)
1914 bne LAF39 ; brif condition true
1915 clr IFCTR ; reset IF counter
1916 LAF28 bsr DATA ; skip over statement
1917 tsta ; end of line?
1918 beq LAEE7 ; brif so
1919 jsr GETNCH ; get start of this statement
1920 cmpa #0x84 ; ELSE?
1921 bne LAF28 ; brif not
1922 dec IFCTR ; is it a matching ELSE?
1923 bpl LAF28 ; brif not - keep looking
1924 jsr GETNCH ; eat the ELSE
1925 LAF39 jsr GETCCH ; get current input
1926 lbcs LAEA4 ; brif numeric - to a GOTO
1927 jmp LADC6 ; let main loop interpret the next command
1928 ; ON command
1929 ON jsr LB70B ; evaluate index expression
1930 LAF45 ldb #0x81 ; make sure we have "GO"
1931 jsr LB26F
1932 pshs a ; save TO/SUB
1933 cmpa #0xa6 ; SUB?
1934 beq LAF54 ; brif so
1935 cmpa #0xa5 ; TO?
1936 LAF52 bne LAED7 ; brif not
1937 LAF54 dec FPA0+3 ; are we at the right index?
1938 bne LAF5D ; brif not
1939 puls b ; get TO/SUB token
1940 jmp LAE88 ; go do GOTO or GOSUB
1941 LAF5D jsr GETNCH ; munch a character
1942 bsr LAF67 ; parse line number
1943 cmpa #', ; is there another line following?
1944 beq LAF54 ; brif so - see if we're there yet
1945 puls b,pc ; clean up TO/SUB token and return - we fell through
1946 ; Parse a line number
1947 LAF67 ldx ZERO ; initialize line number accumulator to 0
1948 stx BINVAL
1949 LAF6B bcc LAFCE ; brif not numeric
1950 suba #'0 ; adjust to actual value of digit
1951 sta CHARAC ; save digit
1952 ldd BINVAL ; get accumulated number
1953 cmpa #24 ; will this overflow?
1954 bhi LAF52 ; brif so - raise syntax error
1955 aslb ; times 2
1956 rola
1957 aslb ; times 4
1958 rola
1959 addd BINVAL ; times 5
1960 aslb ; times 10
1961 rola
1962 addb CHARAC ; add in digit
1963 adca #0
1964 std BINVAL ; save new accumulated number
1965 jsr GETNCH ; fetch next character
1966 bra LAF6B ; process next digit
1967 ; LET command (the LET keyword requires Extended Basic)
1968 LET jsr LB357 ; evaluate destination variable
1969 stx VARDES ; save descriptor pointer
1970 ldb #0xb3 ; make sure we have =
1971 jsr LB26F
1972 lda VALTYP ; get destination variable type
1973 pshs a ; save it for later
1974 jsr LB156 ; evaluate the expression to assign
1975 puls a ; get back original variable type
1976 rora ; put type in C
1977 jsr LB148 ; make sure the current result matches the type
1978 lbeq LBC33 ; bri fnumeric - copy FPA0 to variable
1979 LAFA4 ldx FPA0+2 ; point to descriptor of replacement string
1980 ldd FRETOP ; get bottom of string space
1981 cmpd 2,x ; is the string already in string space?
1982 bhs LAFBE ; brif so
1983 cmpx VARTAB ; is the descriptor in variable space?
1984 blo LAFBE ; brif not
1985 LAFB1 ldb ,x ; get length of string
1986 jsr LB50D ; allocate space for this string
1987 ldx V4D ; get descriptor pointer back
1988 jsr LB643 ; copy string into string space
1989 ldx #STRDES ; point to temporary string descriptor
1990 LAFBE stx V4D ; save descriptor pointer
1991 jsr LB675 ; remove string from string stack if appropriate
1992 ldu V4D ; get back replacement descriptor
1993 ldx VARDES ; get target descriptor
1994 pulu a,b,y ; get string length (A) and data pointer (Y)
1995 sta ,x ; save new length
1996 sty 2,x ; save new pointer
1997 LAFCE rts
1998 ; READ and INPUT commands.
1999 LAFCF fcc '?REDO' ; The ?REDO message
2000 fcb 0x0d,0x00
2001 LAFD6 ldb #2*17 ; bad file data code
2002 tst DEVNUM ; are we reading from the keyboard?
2003 beq LAFDF ; brif so
2004 LAFDC jmp LAC46 ; raise the error
2005 LAFDF lda INPFLG ; are we doing INPUT?
2006 beq LAFEA ; brif so
2007 ldx DATTXT ; get line number where the DATA statement happened
2008 stx CURLIN ; set current line number to that so can report the correct location
2009 jmp LB277 ; raise a syntax error on bad data
2010 LAFEA ldx #LAFCF-1 ; show the ?REDO if we're doing INPUT
2011 jsr LB99C
2012 ldx TINPTR ;* reset input pointer to start of statement (this will cause the
2013 stx CHARAD ;* INPUT statement to be re-executed
2014 rts
2015 INPUT ldb #11*2 ; code for illegal direct statement
2016 ldx CURLIN ; are we in immediate mode?
2017 leax 1,x
2018 beq LAFDC ; brif so - raise ID error
2019 bsr LB002 ; go do the INPUT thing
2020 clr DEVNUM ; reset device to screen/keyboard
2021 rts
2022 LB002 cmpa #'# ; is there a device number?
2023 bne LB00F ; brif not
2024 jsr LA5A5 ; parse device number
2025 jsr LA3ED ; make sure it's valid for input
2026 jsr LB26D ; make sure we have a comma after the device number
2027 LB00F cmpa #'" ; is there a prompt string?
2028 bne LB01E ; brif not
2029 jsr LB244 ; parse the prompt string
2030 ldb #'; ; make sure we have a semicolon after the prompt
2031 jsr LB26F
2032 jsr LB99F ; print the prompt
2033 LB01E ldx #LINBUF ; point to line input buffer
2034 clr ,x ; NUL first byte to indicate no data
2035 tst DEVNUM ; is it keyboard input?
2036 bne LB049 ; brif not
2037 bsr LB02F ; read a line from the keyboard
2038 ldb #', ; put a comma at the start of the buffer
2039 stb ,x
2040 bra LB049 ; go process some input
2041 LB02F jsr LB9AF ; send a ?
2042 jsr LB9AC ; send a space
2043 LB035 jsr LA390 ; read input from the keyboard
2044 bcc LB03F ; brif not BREAK
2045 leas 4,s ; clean up stack
2046 LB03C jmp LAE11 ; go process BREAK
2047 LB03F ldb #2*23 ; input past end of file error code
2048 tst CINBFL ; was it EOF?
2049 bne LAFDC ; brif so - raise the error
2050 rts
2051 READ ldx DATPTR ; fetch current DATA pointer
2052 skip1lda ; set A to nonzero (for READ)
2053 LB049 clra ; set A to zero (for INPUT)
2054 sta INPFLG ; record whether we're doing READ or INPUT
2055 stx DATTMP ; save current input location
2056 LB04E jsr LB357 ; evaluate a variable (destination of data)
2057 stx VARDES ; save descriptor
2058 ldx CHARAD ; save interpreter input pointer
2059 stx BINVAL
2060 ldx DATTMP ; get data pointer
2061 lda ,x ; is there anything to read?
2062 bne LB069 ; brif so
2063 lda INPFLG ; is it INPUT?
2064 bne LB0B9 ; brif not
2065 jsr RVEC10 ; do the RAM hook dance
2066 jsr LB9AF ; send a ? (so subsequent lines get ??)
2067 bsr LB02F ; go read an input line
2068 LB069 stx CHARAD ; save data pointer
2069 jsr GETNCH ; fetch next data character
2070 ldb VALTYP ; do we want a number?
2071 beq LB098 ; brif so
2072 ldx CHARAD ; get input pointer
2073 sta CHARAC ; save initial character as the delimiter
2074 cmpa #'" ; do we have a string delimiter?
2075 beq LB08B ; brif so - use " as both delimiters
2076 leax -1,x ; back up input if we don't have a delimiter
2077 clra ; set delimiter to NUL (end of line)
2078 sta CHARAC
2079 jsr LA35F ; set up print parameters
2080 tst PRTDEV ; is it a file type device?
2081 bne LB08B ; brif so - use two NULs
2082 lda #': ; use colon as one delimiter
2083 sta CHARAC
2084 lda #', ; and use comma as the other
2085 LB08B sta ENDCHR ; save second terminator
2086 jsr LB51E ; parse out the string
2087 jsr LB249 ; move input pointer past the string
2088 jsr LAFA4 ; assign the string to the variable
2089 bra LB09E ; go see if there's more to read
2090 LB098 jsr LBD12 ; parse a numeric string
2091 jsr LBC33 ; assign the numbe to the variable
2092 LB09E jsr GETCCH ; get current input character
2093 beq LB0A8 ; brif end of line
2094 cmpa #', ; check for comma
2095 lbne LAFD6 ; brif not - we have bad data
2096 LB0A8 ldx CHARAD ; get current data pointer
2097 stx DATTMP ; save the data pointer
2098 ldx BINVAL ; restore the interpreter input pointer
2099 stx CHARAD
2100 jsr GETCCH ; get current input from program
2101 beq LB0D5 ; brif end of statement
2102 jsr LB26D ; make sure there's a comma between variables
2103 bra LB04E ; go read another item
2104 LB0B9 stx CHARAD ; reset input pointer
2105 jsr LAEE8 ; search for end of statement
2106 leax 1,x ; move past end of statement
2107 tsta ; was it end of line?
2108 bne LB0CD ; brif not
2109 ldb #2*3 ; code for out of data
2110 ldu ,x++ ; get pointer to next line
2111 beq LB10A ; brif end of program - raise OD error
2112 ldd ,x++ ; get line number
2113 std DATTXT ; record it for raising errors in DATA statements
2114 LB0CD lda ,x ; do we have a DATA statement?
2115 cmpa #0x86
2116 bne LB0B9 ; brif not - keep scanning
2117 bra LB069 ; go process the input
2118 LB0D5 ldx DATTMP ; get data pointer
2119 ldb INPFLG ; were we doing READ?
2120 lbne LADE8 ; brif so - save DATA pointer
2121 lda ,x ; is there something after the input in the input buffer?
2122 beq LB0E7 ; brif not - we consumed everything
2123 ldx #LB0E8-1 ; print the ?EXTRA IGNORED message
2124 jmp LB99C
2125 LB0E7 rts
2126 LB0E8 fcc '?EXTRA IGNORED'
2127 fcb 0x0d,0x00
2128 ; NEXT command
2129 NEXT bne LB0FE ; brif argument given
2130 ldx ZERO ; set to NULL descriptor pointer
2131 bra LB101 ; go process "any index will do"
2132 LB0FE jsr LB357 ; evaluate the variable
2133 LB101 stx VARDES ; save the index we're looking for
2134 jsr LABF9 ; search the stack for the matching frame
2135 beq LB10C ; brif we found a matching frame
2136 ldb #0 ; code for NEXT without FOR
2137 LB10A bra LB153 ; raise the error
2138 LB10C tfr x,s ; reset the stack to the start of the stack frame
2139 leax 3,x ; point to the STEP value
2140 jsr LBC14 ; copy the value to FPA0
2141 lda 8,s ; get step direction
2142 sta FP0SGN ; save as sign of FPA0
2143 ldx VARDES ; point to index variable
2144 jsr LB9C2 ; add (X) to FPA0 (steps the index)
2145 jsr LBC33 ; save new value to the index
2146 leax 9,s ; point to terminal condition
2147 jsr LBC96 ; compare the new index value with the terminal
2148 subb 8,s ; set B=0 if we hit the terminal (or passed it with nonzero step)
2149 beq LB134 ; brif loop complete
2150 ldx 14,s ; restore line number and input pointer to start of loop
2151 stx CURLIN
2152 ldx 16,s
2153 stx CHARAD
2154 LB131 jmp LAD9E ; return to interpretation loop
2155 LB134 leas 18,s ; remove the frame from the stack
2156 jsr GETCCH ; get character after the index
2157 cmpa #', ; do we have more indexes?
2158 bne LB131 ; brif not
2159 jsr GETNCH ; munch the comma
2160 bsr LB0FE ; go process another value
2161 ; NOTE: despite the BSR on the preceding line, execution of the NEXT command will not fall
2162 ; through this point, nor will the stack grow without bound. The BSR is required to make sure
2163 ; the stack is aligned properly for the stack search for the subsequent index variable.
2164 ;
2165 ; The following is the expression evaluation system. It has various entry points including for type
2166 ; checking. This really consists of two co-routines, one for evaluating operators and one for individual
2167 ; terms. However, it does some rather confusing stack operations so it's a bit difficult to follow
2168 ; just how some of this works.
2169 ;
2170 ; Evaluate numeric expression
2171 LB141 bsr LB156 ; evaluate an expression
2172 ; TM error if string
2173 LB143 andcc #0xfe ; clear C to indicate we want a number
2174 skip2keepc
2175 ; TM error if numeric
2176 LB146 orcc #1 ; set C to indicate we want a string
2177 ; TM error if: C = 1 and number, OR C = 0 and string
2178 LB148 tst VALTYP ; set flags on the current value to (doesn't change C)
2179 bcs LB14F ; brif we want a string
2180 bpl LB0E7 ; brif we have a number (we want a number)
2181 skip2
2182 LB14F bmi LB0E7 ; brif we have a string (we want a string)
2183 LB151 ldb #12*2 ; code for TM error
2184 LB153 jmp LAC46 ; raise the error
2185 ; The general expression evaluation entry point
2186 LB156 bsr LB1C6 ; back up input pointer to compensate for GETNCH below
2187 LB158 clra ; set operator precedence to 0 (no previous operator)
2188 skip2
2189 LB15A pshs b ; save relational operator flags
2190 pshs a ; save previous operator precedence
2191 ldb #1 ; make sure we aren't overflowing the stack
2192 jsr LAC33
2193 jsr LB223 ; go evaluate the first term
2194 LB166 clr TRELFL ; flag no relational operators seen
2195 LB168 jsr GETCCH ; get input character
2196 LB16A suba #0xb2 ; token for > (lowest relational operator)
2197 blo LB181 ; brif below relational operators
2198 cmpa #3 ; there are three relational operators, is it one?
2199 bhs LB181 ; brif not
2200 cmpa #1 ; set C if >
2201 rola ; shift C into bit 0 (4: <, 2: =, 1: >)
2202 eora TRELFL ; flip the bit for this operator
2203 cmpa TRELFL ; did the result get lower?
2204 blo LB1DF ; brif so - we have a duplicate so raise an error
2205 sta TRELFL ; save new operator flags
2206 jsr GETNCH ; munch the operator
2207 bra LB16A ; go see if we have another one
2208 LB181 ldb TRELFL ; do we have a relational comparison?
2209 bne LB1B8 ; brif so
2210 lbcc LB1F4 ; brif the token is above the relational operators
2211 adda #7 ; put operators starting at 0
2212 bhs LB1F4 ; brif we're above 0 - it's an operator, Jim
2213 adca VALTYP ; add carry, numeric flag, and modified token number
2214 lbeq LB60F ; brif we have string and A is + - do concatenation
2215 adca #-1 ; restore operator number
2216 pshs a ; save operator number
2217 asla ; times 2
2218 adda ,s+ ; and times 3 (3 bytes per entry)
2219 ldx #LAA51 ; point to operator pecedence and jump table
2220 leax a,x ; point to correct entry
2221 LB19F puls a ; get precedence of previous operation
2222 cmpa ,x ; is hit higher (or same) than the current one?
2223 bhs LB1FA ; brif so - we need to process that operator
2224 bsr LB143 ; TM error if we have a string
2225 LB1A7 pshs a ; save previous operation precedence
2226 bsr LB1D4 ; push operator handler address and FPA0 onto the stack
2227 ldx RELPTR ; get pointer to arithmetic/logical table entry for last operation
2228 puls a ; get back precedence
2229 bne LB1CE ; brif we had a relational operation
2230 tsta ; check precedence of previous operation
2231 lbeq LB220 ; brif end of expression
2232 bra LB203 ; go handle operation
2233 LB1B8 asl VALTYP ; get type of value to C
2234 rolb ; mix it in to bit 0 of relational flags
2235 bsr LB1C6 ; back up input pointer
2236 ldx #LB1CB ; point to relational operator precedence and handler
2237 stb TRELFL ; save relational comparison flags
2238 clr VALTYP ; result will be numeric
2239 bra LB19F ; to process the operation
2240 LB1C6 ldx CHARAD ; get input pointer
2241 jmp LAEBB ; back it up one and put it back
2242 LB1CB fcb 0x64 ; precedence of relational comparison
2243 fdb LB2F4 ; handler address for relational comparison
2244 LB1CE cmpa ,x ; is last done operation higher (or same) precedence?
2245 bhs LB203 ; brif so - go process it
2246 bra LB1A7 ; go push things on the stack and process this operation otherwise
2247 LB1D4 ldd 1,x ; get address of operatorroutine
2248 pshs d ; save it
2249 bsr LB1E2 ; push FPA0 onto the stack
2250 ldb TRELFL ; get back relational operator flags
2251 lbra LB15A ; go evaluate another operation
2252 LB1DF jmp LB277 ; raise a syntax error
2253 LB1E2 ldb FP0SGN ; get sign of FPA0
2254 lda ,x ; get precedence of this operation
2255 LB1E6 puls y ; get back original caller
2256 pshs b ; save sign
2257 LB1EA ldb FP0EXP ; get exponent
2258 ldx FPA0 ; get mantissa
2259 ldu FPA0+2
2260 pshs u,x,b ; stow FPA0 sign and mantissa
2261 jmp ,y ; return to caller
2262 LB1F4 ldx ZERO ; point to dummy value
2263 lda ,s+ ; get precedence of previous operation (and set flags)
2264 beq LB220 ; brif end of expression
2265 LB1FA cmpa #0x64 ; relational operation?
2266 beq LB201 ; brif so
2267 jsr LB143 ; type mismatch if string
2268 LB201 stx RELPTR ; save pointer to operator routine
2269 LB203 puls b ; get relational flags
2270 cmpa #0x5a ; NOT operation?
2271 beq LB222 ; brif so (it was unary)
2272 cmpa #0x7d ; unary negation?
2273 beq LB222 ; brif so
2274 lsrb ; shift value type flag out of relational flags
2275 stb RELFLG ; save relational operator flag
2276 puls a,x,u ; get FP value back
2277 sta FP1EXP ; set exponent and mantissa in FPA1
2278 stx FPA1
2279 stu FPA1+2
2280 puls b ; and the sign
2281 stb FP1SGN
2282 eorb FP0SGN ; set RESSGN if the two operand signs differ
2283 stb RESSGN
2284 LB220 ldb FP0EXP ; get exponent of FPA0
2285 LB222 rts ; return or transfer control to operator handler routine
2286 LB223 jsr RVEC15 ; do the RAM hook dance
2287 clr VALTYP ; set type to numeric
2288 jsr GETNCH ; get first character in the term
2289 bcc LB22F ; brif not numeric
2290 LB22C jmp LBD12 ; parse a number (and return)
2291 LB22F jsr LB3A2 ; set carry if not alpha
2292 bcc LB284 ; brif alpha character (variable)
2293 cmpa #'. ; decimal point?
2294 beq LB22C ; brif so - evaluate number
2295 cmpa #0xac ; minus?
2296 beq LB27C ; brif so - process unary negation
2297 cmpa #0xab ; plus?
2298 beq LB223 ; brif so - ignore unary "posation"
2299 cmpa #'" ; string delimiter?
2300 bne LB24E ; brif not
2301 LB244 ldx CHARAD ; get input pointer
2302 jsr LB518 ; go parse the string
2303 LB249 ldx COEFPT ; get address of end of string
2304 stx CHARAD ; move input pointer past string
2305 rts
2306 LB24E cmpa #0xa8 ; NOT?
2307 bne LB25F ; brif not
2308 lda #0x5a ; precedence of unary NOT
2309 jsr LB15A ; process the operand of NOT
2310 jsr INTCNV ; convert to integer in D
2311 coma ; do a bitwise complement
2312 comb
2313 jmp GIVABF ; resturn the result
2314 LB25F inca ; is it a function token?
2315 beq LB290 ; brif so
2316 LB262 bsr LB26A ; only other legal thing must be a (expr)
2317 jsr LB156 ; evaluate parentheticized expression
2318 LB267 ldb #') ; force a )
2319 skip2
2320 LB26A ldb #'( ; force a (
2321 skip2
2322 LB26D ldb #', ; force a ,
2323 LB26F cmpb [CHARAD] ; does character match?
2324 bne LB277 ; brif not
2325 jmp GETNCH ; each the character and return the next
2326 LB277 ldb #2*1 ; raise syntax error
2327 jmp LAC46
2328 LB27C lda #0x7d ; unary negation precedence
2329 jsr LB15A ; evaluate argument
2330 jmp LBEE9 ; flip sign of FPA0 and return
2331 LB284 jsr LB357 ; evaluate variable
2332 LB287 stx FPA0+2 ; save descriptor address in FPA0
2333 lda VALTYP ; test variable type
2334 bne LB222 ; brif string - we're done
2335 jmp LBC14 ; copy FP number from (X) into FPA0
2336 LB290 jsr GETNCH ; get the actual token number
2337 tfr a,b ; save it (for offsetting X)
2338 lslb ; two bytes per jump table entry (and lose high bit)
2339 jsr GETNCH ; eat the token byte
2340 cmpb #2*19 ; is it a valid token for Color Basic?
2341 bls LB29F ; brif so
2342 jmp [COMVEC+18] ; transfer control to Extended Basic if not
2343 LB29F pshs b ; save jump table offset
2344 cmpb #2*14 ; does it expect a numeric argument?
2345 blo LB2C7 ; brif so
2346 cmpb #2*18 ; does it need no arguments?
2347 bhs LB2C9 ; brif so
2348 bsr LB26A ; force a (
2349 lda ,s ; get token value
2350 cmpa #2*17 ; is it POINT?
2351 bhs LB2C9 ; brif so
2352 jsr LB156 ; evaluate first argument string
2353 bsr LB26D ; force a comma
2354 jsr LB146 ; TM error if string
2355 puls a ; get token value
2356 ldu FPA0+2 ; get string descriptor
2357 pshs u,a ; now we save the first string argument and the token value
2358 jsr LB70B ; evaluate first numeric argument
2359 puls a ; get back token value
2360 pshs b,a ; save second argument and token value
2361 fcb 0x8e ; opcode of LDX immediate (skips two bytes)
2362 LB2C7 bsr LB262 ; force a (
2363 LB2C9 puls b ; get offset
2364 ldx COMVEC+8 ; get jump table pointer
2365 abx ; add offset into table
2366 jsr [,x] ; go process function
2367 jmp LB143 ; make sure result is numeric
2368 ; operator OR
2369 LB2D4 skip1lda ; set flag to nonzero to signal OR
2370 ; operator AND
2371 LB2D5 clra ; set flag to zero to signal AND
2372 sta TMPLOC ; save AND/OR flag
2373 jsr INTCNV ; convert second argument to intenger
2374 std CHARAC ; save it
2375 jsr LBC4A ; move first argument to FPA0
2376 jsr INTCNV ; convert first argument to integer
2377 tst TMPLOC ; is it AND or OR?
2378 bne LB2ED ; brif OR
2379 anda CHARAC ; do the bitwise AND
2380 andb ENDCHR
2381 bra LB2F1 ; finish up
2382 LB2ED ora CHARAC ; do the bitwise OR
2383 orb ENDCHR
2384 LB2F1 jmp GIVABF ; return integer result
2385 ; relational comparision operators
2386 LB2F4 jsr LB148 ; TM error if type mismatch
2387 BNE LB309 ; brif we have a string comparison
2388 lda FP1SGN ; pack FPA1
2389 ora #0x7f
2390 anda FPA1
2391 sta FPA1
2392 ldx #FP1EXP ; point to packed FPA1
2393 jsr LBC96 ; compare FPA0 to FPA1
2394 bra LB33F ; handle truth comparison
2395 LB309 clr VALTYP ; the result of a comparison is always a number
2396 dec TRELFL ; remove the string flag from the comparison data
2397 jsr LB657 ; get string details for second argument
2398 stb STRDES ; save them in the temporary string descriptor
2399 stx STRDES+2
2400 ldx FPA1+2 ; get pointer to first argument descriptor
2401 jsr LB659 ; get string details for second argument
2402 lda STRDES ; get length of second argument
2403 pshs b ; save length of first argument
2404 suba ,s+ ; now A is the difference in string lengths
2405 beq LB328 ; brif string lengths are equal
2406 lda #1 ; flag for second argument is longer than first
2407 bcc LB328 ; brif second string is longer than first
2408 ldb STRDES ; get length of second string (shorter)
2409 nega ; invert default comparison result
2410 LB328 sta FP0SGN ; save default truth flag
2411 ldu STRDES+2 ; get pointer to start of second string
2412 incb ; compensate for DECB
2413 LB32D decb ; have we compared everything?
2414 bne LB334 ; brif not
2415 ldb FP0SGN ; get default truth value
2416 bra LB33F ; decide comparison truth
2417 LB334 lda ,x+ ; get byte from first argument
2418 cmpa ,u+ ; compare with second argument
2419 beq LB32D ; brif equal - keep comparing
2420 ldb #0xff ; negative if first string is > second
2421 bcc LB33F ; brif string A > string B
2422 negb ; invert result
2423 LB33F addb #1 ; convert to 0,1,2
2424 rolb ; shift left - now it's 4,2,1 for <, =, >
2425 andb RELFLG ; keep only the truth we care about
2426 beq LB348 ; brif no matching bits - it's false
2427 ldb #0xff ; set true
2428 LB348 jmp LBC7C ; convert result to FP and return it
2429 ; DIM command
2430 LB34B jsr LB26D ; make sure there's a comma between variables
2431 DIM ldb #1 ; flag that we're dimensioning
2432 bsr LB35A ; go allocate the variable
2433 jsr GETCCH ; are we done?
2434 bne LB34B ; brif not
2435 rts
2436 ; This routine parses a variable. For scalars, it will return a NULL string or 0 value number
2437 ; if it is called from "evaluate term". Otherwise, it allocates the variable. For arrays, it will
2438 ; allocate a default sized array if dimensioning is not underway and then attempt to look up
2439 ; the requested coordinates in that array. Otherwise, it will allocate an array based on the
2440 ; specified dimension values.
2441 LB357 clrb ; flag that we're not setting up an array
2442 jsr GETCCH
2443 LB35A stb DIMFLG ; save dimensioning flag
2444 sta VARNAM ; save first character of variable name
2445 jsr GETCCH ; get input character (why? we already have it)
2446 bsr LB3A2 ; set carry if not alpha
2447 lbcs LB277 ; brif our variable doesn't start with a letter
2448 clrb ; default second variable character to NUL
2449 stb VALTYP ; set value type to numeric
2450 jsr GETNCH ; get second character
2451 bcs LB371 ; brif numeric - numbers are allowed
2452 bsr LB3A2 ; set carry if not alpha
2453 bcs LB37B ; brif not alpha
2454 LB371 tfr a,b ; save set second character of variable name
2455 LB373 jsr GETNCH ; get an input character
2456 bcs LB373 ; brif numeric - still in variable name
2457 bsr LB3A2 ; set carry if not alpha
2458 bcc LB373 ; brif alpha - still in variable name
2459 LB37B cmpa #'$ ; do we have the string sigil?
2460 bne LB385 ; brif not
2461 com VALTYP ; set value type to string
2462 addb #0x80 ; set bit 7 of second variable character to indicate string
2463 jsr GETNCH ; eat the sigil
2464 LB385 stb VARNAM+1 ; save second variable name character
2465 ora ARYDIS ; merge array disable flag (will set bit 7 of input character if no arrays)
2466 suba #'( ; do we have a subscript?
2467 lbeq LB404 ; brif so
2468 clr ARYDIS ; disable the array disable flag - it's single use
2469 ldx VARTAB ; point to the start of the variable table
2470 ldd VARNAM ; get variable name
2471 LB395 cmpx ARYTAB ; are we at the top of the variable table?
2472 beq LB3AB ; brif so
2473 cmpd ,x++ ; does the variable name match (and move pointer to variable data)
2474 beq LB3DC ; brif so
2475 leax 5,x ; move to next table entry
2476 bra LB395 ; see if we have a match
2477 ; Set carry if not upper case alpha
2478 LB3A2 cmpa #'A ; set C if less than A
2479 bcs LB3AA ; brif less than A
2480 suba #'Z+1 ; set C if greater than Z
2481 suba #-('Z+1)
2482 LB3AA rts
2483 LB3AB ldx #ZERO ; point to empty location (NULL/0 value)
2484 ldu ,s ; get caller address
2485 cmpu #LB287 ; coming from "evaluate term"?
2486 beq LB3DE ; brif so - don't allocate
2487 ldd ARYEND ; get end of arrays
2488 std V43 ; save as top of source block
2489 addd #7 ; 7 bytes per scalar entry
2490 std V41 ; save as top of destination block
2491 ldx ARYTAB ; get bottom of arrays
2492 stx V47 ; save as bottom of source block
2493 jsr LAC1E ; move the arrays up to make a hole
2494 ldx V41 ; get new top of arrays
2495 stx ARYEND ; set new end of arrays
2496 ldx V45 ; get bottom of destination block
2497 stx ARYTAB ; set as new start of arrays
2498 ldx V47 ; get old end of variables
2499 ldd VARNAM ; get name of variable
2500 std ,x++ ; set variable name and advance X to the value
2501 clra ; zero out the variable value
2502 clrb
2503 std ,x
2504 std 2,x
2505 sta 4,x
2506 LB3DC stx VARPTR ; save descriptor address of return value
2507 LB3DE rts
2508 ; Various integer conversion routines
2509 LB3DF fcb 0x90,0x80,0x00,0x00,0x00 ; FP constant -32768
2510 LB3E4 jsr GETNCH ; fetch input character
2511 LB3E6 jsr LB141 ; evaluate numeric expression
2512 LB3E9 lda FP0SGN ; get sign of value
2513 bmi LB44A ; brif negative (raise FC error)
2514 INTCNV jsr LB143 ; TM error if string
2515 lda FP0EXP ; get exponent
2516 cmpa #0x90 ; is it within the range for a 16 bit integer?
2517 blo LB3FE ; brif smaller than 32768
2518 ldx #LB3DF ; point to -32678 constant
2519 jsr LBC96 ; is FPA0 equal to -32768?
2520 bne LB44A ; brif not - magnitude is too far negative
2521 LB3FE jsr LBCC8 ; move binary point to the right of FPA0 and correct sign
2522 ldd FPA0+2 ; get the resulting integer
2523 rts
2524 LB404 ldd DIMFLG ; get dimensioning flag and variable type
2525 pshs b,a ; save them (to avoid issues while evaluating dimension values)
2526 nop ; dead space caused by 1.2 revision
2527 clrb ; reset dimension counter
2528 LB40A ldx VARNAM ; get variable name
2529 pshs x,b ; save dimension counter and variable name
2530 bsr LB3E4 ; evaluate a dimension value (and skip either ( or ,)
2531 puls b,x,y ; get variable name, dimension counter, and dimensioning/type flag
2532 stx VARNAM ; restore variable name
2533 ldu FPA0+2 ; get dimension size/index
2534 pshs u,y ; save dimension size and dimensioning/type flag
2535 incb ; bump dimension counter
2536 jsr GETCCH ; get what's after the dimension count
2537 cmpa #', ; do we have another dimension?
2538 beq LB40A ; brif so - parse it
2539 stb TMPLOC ; save dimension counter
2540 jsr LB267 ; make sure we have a )
2541 puls a,b ; get back variable type and dimensioning flag
2542 std DIMFLG ; restore variable type and dimensioning flag
2543 ldx ARYTAB ; get start of arrays
2544 LB42A cmpx ARYEND ; are we at the end of the array table
2545 beq LB44F ; brif so
2546 ldd VARNAM ; get variable name
2547 cmpd ,x ; does it match?
2548 beq LB43B ; brif so
2549 ldd 2,x ; get length of this array
2550 leax d,x ; move to next array
2551 bra LB42A ; go check another entry
2552 LB43B ldb #2*9 ; code for redimensioned array error
2553 lda DIMFLG ; are we dimensioning?
2554 bne LB44C ; brif so - raise error
2555 ldb TMPLOC ; get number of dimensions given
2556 cmpb 4,x ; does it match?
2557 beq LB4A0 ; brif so
2558 LB447 ldb #8*2 ; raise "bad subscript"
2559 skip2
2560 LB44A ldb #4*2 ; raise "illegal function call"
2561 LB44C jmp LAC46 ; raise error
2562 LB44F ldd #5 ; 5 bytes per array entry
2563 std COEFPT ; initialize array size to entry size
2564 ldd VARNAM ; get variable name
2565 std ,x ; set array name
2566 ldb TMPLOC ; get dimension count
2567 stb 4,x ; set dimension count
2568 jsr LAC33 ; make sure we haven't overflowed memory
2569 stx V41 ; save array descriptor address
2570 LB461 ldb #11 ; default dimension value (zero-based, gives max index of 10)
2571 clra ; zero extend (??? why not LDD above?)
2572 tst DIMFLG ; are we dimensioning?
2573 beq LB46D ; brif not
2574 puls a,b ; get dimension size
2575 addd #1 ; account for zero based indexing
2576 LB46D std 5,x ; save dimension size
2577 bsr LB4CE ; multiply by accumulated array size
2578 std COEFPT ; save new array size
2579 leax 2,x ; move to next dimension
2580 dec TMPLOC ; have we done all dimensions?
2581 bne LB461 ; brif not
2582 stx TEMPTR ; save end of array descriptor (minus 5)
2583 addd TEMPTR ; add total size of array to address of descriptor
2584 lbcs LAC44 ; brif it overflows memory
2585 tfr d,x ; save end of array for later
2586 jsr LAC37 ; does array fit in memory?
2587 subd #STKBUF-5 ; subtract out the "stack fudge factor" but add 5 to the result
2588 std ARYEND ; save new end of arrays
2589 clra ; set up for clearing
2590 LB48C leax -1,x ; move back one
2591 sta 5,x ; blank out a byte in the array data
2592 cmpx TEMPTR ; have we reached the array header?
2593 bne LB48C ; brif not
2594 ldx V41 ; get address of start of descriptor
2595 lda ARYEND ; get MSB of end of array back (B still has LSB)
2596 subd V41 ; subtract start of descriptor
2597 std 2,x ; save length of array in array header
2598 lda DIMFLG ; are we dimensioning?
2599 bne LB4CD ; brif so - we're done
2600 LB4A0 ldb 4,x ; get number of dimensions
2601 stb TMPLOC ; initialize counter
2602 clra ; initialize accumulated offset
2603 clrb
2604 LB4A6 std COEFPT ; save accumulated offset
2605 puls a,b ; get desired index
2606 std FPA0+2 ; save it
2607 cmpd 5,x ; is it in range for this dimension?
2608 bhs LB4EB ; brif not
2609 ldu COEFPT ; get accumulated offset
2610 beq LB4B9 ; brif first dimension
2611 bsr LB4CE ; multiply accumulated offset by dimension length
2612 addd FPA0+2 ; add in offset into this dimension
2613 LB4B9 leax 2,x ; move to next dimension in header
2614 dec TMPLOC ; done all dimensions?
2615 bne LB4A6 ; brif not
2616 std ,--s ; save D for multiply by 5 (should be pshs d)
2617 aslb ; times 2
2618 rola
2619 aslb ; times 4
2620 rola
2621 addd ,s++ ; times 5
2622 leax d,x ; add in offset from start of array data
2623 leax 5,x ; offset to end of header
2624 stx VARPTR ; save pointer to element data
2625 LB4CD rts
2626 ; multiply 16 bit number at 5,x by the 16 bit number in COEFPT; return result in D; BS error if carry
2627 LB4CE lda #16 ; 16 shifts to do a multiply
2628 sta V45 ; save shift counter
2629 ldd 5,x ; get multiplier
2630 std BOTSTK ; save it
2631 clra ; zero out product
2632 clrb
2633 LB4D8 aslb ; shift product left
2634 rola
2635 bcs LB4EB ; brif we have a carry
2636 asl COEFPT+1 ; shift other factor left
2637 rol COEFPT
2638 bcc LB4E6 ; brif no carry - this bit position is 0
2639 addd BOTSTK ; add in multiplier at this bit position
2640 bcs LB4EB ; brif carry - do an error
2641 LB4E6 dec V45 ; have we done all 16 bits?
2642 bne LB4D8 ; brif not
2643 rts
2644 LB4EB jmp LB447 ; raise a BS error
2645 ; MEM function
2646 ; BUG: this doesn't account for the STKBUF fudge factor used for memory availability checks
2647 MEM tfr s,d ; get stack pointer where we can do math
2648 subd ARYEND ; calculate number of bytes between the stack and the top of arrays
2649 skip1 ; return result
2650 ; Convert unsigned value in B to FP
2651 LB4F3 clra ; zero extend
2652 ; Convert signed value in D to FP
2653 GIVABF clr VALTYP ; set value type to numeric
2654 std FPA0 ; save value in FPA0
2655 ldb #0x90 ; exponent for top two bytes to be an integer
2656 jmp LBC82 ; finish conversion to integer
2657 ; STR$ function
2658 STR jsr LB143 ; make sure we have a number
2659 ldu #STRBUF+2 ; convert FP number to string in temporary string buffer
2660 jsr LBDDC
2661 leas 2,s ; don't return to the function evaluator (which will do a numeric type check)
2662 ldx #STRBUF+1 ; point to number string
2663 bra LB518 ; to stash the string in string space and return to the "evaluate term" caller
2664 ; Reserve B bytes of string space. Return start in X and FRESPC
2665 LB50D stx V4D ; save X somewhere in case the caller needs it
2666 LB50F bsr LB56D ; allocate string space
2667 LB511 stx STRDES+2 ; save pointer to allocated space in the temporary descriptor
2668 stb STRDES ; save length in the temporary descriptor
2669 rts
2670 LB516 leax -1,x ; move pointer back one (to compensate for the increment below)
2671 ; Scan from X until either NUL or one of the string terminators is found
2672 LB518 lda #'" ; set terminator to be string delimiter
2673 LB51A sta CHARAC ; set both delimiters
2674 sta ENDCHR
2675 LB51E leax 1,x ; move to next character
2676 stx RESSGN ; save start of string
2677 stx STRDES+2 ; save start of string in the temporary string descriptor
2678 ldb #-1 ; initialize length counter to -1 (compensate for initial INCB)
2679 LB526 incb ; bump string length
2680 lda ,x+ ; get character from string
2681 beq LB537 ; brif end of line
2682 cmpa CHARAC ; is it delimiter #1?
2683 beq LB533 ; brif so
2684 cmpa ENDCHR ; is it delimiter #2?
2685 bne LB526 ; brif not - keep scanning
2686 LB533 cmpa #'" ; string delimiter?
2687 beq LB539 ; brif so - don't move pointer back
2688 LB537 leax -1,x ; move pointer back (so we don't consume the delimiter)
2689 LB539 stx COEFPT ; save end of string address
2690 stb STRDES ; save string length
2691 ldu RESSGN ; get start of string
2692 cmpu #STRBUF+2 ; is it at the start of the string buffer?
2693 bhi LB54C ; brif so - don't copy it to string space
2694 bsr LB50D ; allocate string space
2695 ldx RESSGN ; point to beginning of the string
2696 jsr LB645 ; copy string data (B bytes) from (X) to (FRESPC)
2697 ; Put temporary string descriptor on the string stack
2698 LB54C ldx TEMPPT ; get top of string stack
2699 cmpx #CFNBUF ; is the string stack full?
2700 bne LB558 ; brif not
2701 ldb #15*2 ; code for "string formula too complex"
2702 LB555 jmp LAC46 ; raise error
2703 LB558 lda STRDES ; get string length
2704 sta 0,x ; save it in the string stack descriptor
2705 ldd STRDES+2 ; get string data pointer
2706 std 2,x ; save in string stack descriptor
2707 lda #0xff ; set value type to string
2708 sta VALTYP
2709 stx LASTPT ; set pointer to last used entry on the string stack
2710 stx FPA0+2 ; set pointer to descriptor in the current evaluation value
2711 leax 5,x ; advance string stack pointer
2712 stx TEMPPT
2713 rts
2714 ; Reserve B bytes in string space. If there isn't enough space, try compacting string space and
2715 ; then try the allocation again. If it still fails, raise OS error.
2716 LB56D clr GARBFL ; flag that compaction not yet done
2717 LB56F clra ; zero extend the length
2718 pshs d ; save requested string length
2719 ldd STRTAB ; get current bottom of strings
2720 subd ,s+ ; calculate new bottom of strings and remove zero extension
2721 cmpd FRETOP ; does the string fit?
2722 blo LB585 ; brif not - try compaction
2723 std STRTAB ; save new bottom of strings
2724 ldx STRTAB ; get bottom of strings
2725 leax 1,x ; now X points to the real start of the allocated space
2726 stx FRESPC ; save the string pointer
2727 puls b,pc ; restore length and return
2728 LB585 ldb #2*13 ; code for out of string space
2729 com GARBFL ; have we compacted string space yet?
2730 beq LB555 ; brif so - raise error
2731 bsr LB591 ; compact string space
2732 puls b ; get back string length
2733 bra LB56F ; go try allocation again
2734 ; Compact string space
2735 ; This is an O(n^2) algorithm. It first searches all extant strings for the highest address data pointer
2736 ; that hasn't already been moved into the freshly compacted string space. If then moves that string data
2737 ; up to the highest address it can go to. It repeats this process over and over until it finds no string
2738 ; that isn't already in the compacted space. While doing this, it has to search all strings on the string
2739 ; stack (this is why the string stack is needed - so we can track anonymous strings), all scalar string
2740 ; variables, and *every* entry in every string array.
2741 LB591 ldx MEMSIZ ; get to of string space
2742 LB593 stx STRTAB ; save top of uncompacted stringspace
2743 clra ; zero out D and reset pointer to discovered variable to NULL
2744 clrb
2745 std V4B
2746 ldx FRETOP ; point to bottom of string space
2747 stx V47 ; save as lowest match address (match will be higher)
2748 ldx #STRSTK ; point to start of string stack
2749 LB5A0 cmpx TEMPPT ; are we at the top of the string stack?
2750 beq LB5A8 ; brif so - done with the string stack
2751 bsr LB5D8 ; check for string in uncompacted space (and advance pointer)
2752 bra LB5A0 ; check another on the string stack
2753 LB5A8 ldx VARTAB ; point to start of scalar variables
2754 LB5AA cmpx ARYTAB ; end of scalars?
2755 beq LB5B2 ; brif so
2756 bsr LB5D2 ; check for string in uncompacted space and advance pointer
2757 bra LB5AA ; check another variable
2758 LB5B2 stx V41 ; save address of end of variables (address of first array)
2759 LB5B4 ldx V41 ; get start of the next array
2760 LB5B6 cmpx ARYEND ; end of arrays?
2761 beq LB5EF ; brif so
2762 ldd 2,x ; get length of array
2763 addd V41 ; add to start of array
2764 std V41 ; save address of next array
2765 lda 1,x ; get second character of variable name
2766 bpl LB5B4 ; brif numeric
2767 ldb 4,x ; get number of dimensions
2768 aslb ; two bytes per dimension size
2769 addb #5 ; add in fixed overhead for array descriptor
2770 abx ; now X points to first array element
2771 LB5CA cmpx V41 ; at the start of the next array?
2772 beq LB5B6 ; brif so - go handle another array
2773 bsr LB5D8 ; check for string in uncompacted space (and advance pointer)
2774 bra LB5CA ; process next array element
2775 LB5D2 lda 1,x ; get second character of variable name
2776 leax 2,x ; move to variable data
2777 bpl LB5EC ; brif numeric
2778 LB5D8 ldb ,x ; get length of string
2779 beq LB5EC ; brif NULL - don't need to check data pointer
2780 ldd 2,x ; get data pointer
2781 cmpd STRTAB ; is it in compacted string space?
2782 bhi LB5EC ; brif so
2783 cmpd V47 ; is it better match than previous best?
2784 bls LB5EC ; brif not
2785 stx V4B ; save descriptor address of best match
2786 std V47 ; save new best data pointer match
2787 LB5EC leax 5,x ; move to next descriptor
2788 LB5EE rts
2789 LB5EF ldx V4B ; get descriptor address of the matched string
2790 beq LB5EE ; brif we didn't find one - we're done
2791 clra ; zero extend length
2792 ldb ,x ; get string length
2793 decb ; subtract one (we won't have a NULL string here)
2794 addd V47 ; now D points to the address of the end of the string data
2795 std V43 ; save as top address of move
2796 ldx STRTAB ; set top of uncompacted space as destination
2797 stx V41
2798 jsr LAC20 ; move string to top of uncompactedspace
2799 ldx V4B ; point to string descriptor
2800 ldd V45 ; get new data pointer address
2801 std 2,x ; update descriptor
2802 ldx V45 ; get bottom of copy destination
2803 leax -1,x ; move back below it
2804 jmp LB593 ; go search for another string to move (and set new bottom of string space)
2805 ; Concatenate two strings. We come here directly from the operator handler rather than via a JSR.
2806 LB60F ldd FPA0+2 ; get string descriptor for the first string
2807 pshs d ; save it
2808 jsr LB223 ; evaluate a second string (concatenation is left associative)
2809 jsr LB146 ; make sure we have a string
2810 puls x ; get back first string descriptor
2811 stx RESSGN ; save it
2812 ldb ,x ; get length of first string
2813 ldx FPA0+2 ; get pointer to second string
2814 addb ,x ; add length of second string
2815 bcc LB62A ; brif combined length is OK
2816 ldb #2*14 ; raise string too long error
2817 jmp LAC46
2818 LB62A jsr LB50D ; reserve room for new string
2819 ldx RESSGN ; get descriptor address of the first string
2820 ldb ,x ; get length of first string
2821 bsr LB643 ; copy it to string space
2822 ldx V4D ; get descriptor address of second string
2823 bsr LB659 ; get string details for second string
2824 bsr LB645 ; copy second string into new string space
2825 ldx RESSGN ; get pointer to first string
2826 bsr LB659 ; remove it from the string stack if possible
2827 jsr LB54C ; put new string on the string stack
2828 jmp LB168 ; return to expression evaluator
2829 ; Copy B bytes to space pointed to by FRESPC
2830 LB643 ldx 2,x ; get source address from string descriptor
2831 LB645 ldu FRESPC ; get destination address
2832 incb ; compensate for decb
2833 bra LB64E ; do the copy
2834 LB64A lda ,x+ ; copy a byte
2835 sta ,u+
2836 LB64E decb ; done yet?
2837 bne LB64A ; brif not
2838 stu FRESPC ; save destination pointer
2839 rts
2840 ; Fetch details of string in FPA0+2 and remove from the string stack if possible
2841 LB654 jsr LB146 ; make sure we have a string
2842 LB657 ldx FPA0+2 ; get descriptor pointer
2843 LB659 ldb ,x ; get length of string
2844 bsr LB675 ; see if it's at the top of the string stack and remove it if so
2845 bne LB672 ; brif not removed
2846 ldx 5+2,x ; get start address of string just removed
2847 leax -1,x ; move pointer down 1
2848 cmpx STRTAB ; is it at the bottom of string space?
2849 bne LB66F ; brif not
2850 pshs b ; save length
2851 addd STRTAB ; add length to start of strings (A was cleared previously)
2852 std STRTAB ; save new string space start (deallocated space for this string)
2853 puls b ; get back string length
2854 LB66F leax 1,x ; restore pointer to pointing at the actual string data
2855 rts
2856 LB672 ldx 2,x ; get data pointer for the string
2857 rts
2858 ; Remove string pointed to by X from the string stack if it is at the top of the stack; return with
2859 ; A clear and Z set if string removed
2860 LB675 cmpx LASTPT ; is it at the top of the string stack?
2861 bne LB680 ; brif not - do nothing
2862 stx TEMPPT ; save new top of stack
2863 leax -5,x ; move the "last" pointer back as well
2864 stx LASTPT
2865 clra ; flag string removed
2866 LB680 rts
2867 ; LEN function
2868 LEN bsr LB686 ; get string details
2869 LB683 jmp LB4F3 ; return unsigned length in B
2870 LB686 bsr LB654 ; get string details and remove from string stack
2871 clr VALTYP ; set value type to numeric
2872 tstb ; set flags according to length
2873 rts
2874 ; CHR$ function
2875 CHR jsr LB70E ; get 8 bit unsigned integer to B
2876 LB68F ldb #1 ; allocate a one byte string
2877 jsr LB56D
2878 lda FPA0+3 ; get character code
2879 jsr LB511 ; save reserved string details in temp descriptor
2880 sta ,x ; put character in string
2881 LB69B leas 2,s ; don't go back to function handler - avoid numeric type check
2882 LB69D jmp LB54C ; return temporary string on string stack
2883 ; ASC function
2884 ASC bsr LB6A4 ; get first character of argument
2885 bra LB683 ; return unsigned code in B
2886 LB6A4 bsr LB686 ; fetch string details
2887 beq LB706 ; brif NULL string
2888 ldb ,x ; get character at start of string
2889 rts
2890 ; LEFT$ function
2891 LEFT bsr LB6F5 ; get arguments from the stack
2892 LB6AD clra ; clear pointer offset (set to start of string)
2893 LB6AE cmpb ,x ; are we asking for more characters than there are in the string?
2894 bls LB6B5 ; brif not
2895 ldb ,x ; only return the number that are in the string
2896 clra ; force starting offset to be the start of the string
2897 LB6B5 pshs b,a ; save offset and length
2898 jsr LB50F ; reserve space in string space
2899 ldx V4D ; point to original string descriptor
2900 bsr LB659 ; get string details
2901 puls b ; get string offset
2902 abx ; now X points to the start of the data to copy
2903 puls b ; get length of copy
2904 jsr LB645 ; copy the data to the allocated space
2905 bra LB69D ; return temp string on string stack
2906 ; RIGHT$ function
2907 RIGHT bsr LB6F5 ; get arguments from stack
2908 suba ,x ; subtract length of original string from desired length
2909 nega ; now A is offset into old string where we start copying
2910 bra LB6AE ; go handle everything else
2911 ; MID$ function
2912 MID ldb #255 ; default length is the whole string
2913 stb FPA0+3 ; save it
2914 jsr GETCCH ; see what we have after offset
2915 cmpa #') ; end of function?
2916 beq LB6DE ; brif so - no length
2917 jsr LB26D ; force a comma
2918 bsr LB70B ; get length parameter
2919 LB6DE bsr LB6F5 ; get string and offset parameters from the stack
2920 beq LB706 ; brif we have a 0 offset requested (string offsets are 1-based)
2921 clrb ; clear length counter
2922 deca ; subtract one from position parameter (we work on 0-based, param is 1-based)
2923 cmpa ,x ; is start greater than length of string?
2924 bhs LB6B5 ; brif so - return NULL string
2925 tfr a,b ; save absolute position parameter
2926 subb ,x ; now B is postition less length
2927 negb ; now B is amount of string to copy
2928 cmpb FPA0+3 ; is it less than the length requested?
2929 bls LB6B5 ; brif so
2930 ldb FPA0+3 ; set length to the requested length
2931 bra LB6B5 ; go finish up copying the substring
2932 ; Common routine for LEFT$, RIGHT$, MID$ - check for ) and fetch string data and first parameter
2933 ; from the stack. These were evaluated in the function evaluation handler. (It's not clear that doing
2934 ; it that way is actually beneficial. However, this is what the ROM designers did, so here we are.)
2935 LB6F5 jsr LB267 ; make sure we have )
2936 ldu ,s ; get return address - we're going to mess with the stack
2937 ldx 5,s ; get address of string descriptor
2938 stx V4D ; save descriptor adddress
2939 lda 4,s ; get first numeric parameter in both A and B
2940 ldb 4,s
2941 leas 7,s ; clean up stack
2942 tfr u,pc ; return to original caller
2943 LB706 jmp LB44A ; raise FC error
2944 ; Evaluate an unsigned 8 bit expression to B
2945 LB709 jsr GETNCH ; move to next character
2946 LB70B jsr LB141 ; evaluate a numeric expression
2947 LB70E jsr LB3E9 ; convert to integer in D
2948 tsta ; are we negative or > 255?
2949 bne LB706 ; brif so - FC error
2950 jmp GETCCH ; fetch current input character and return
2951 ; VAL function
2952 VAL jsr LB686 ; get string details
2953 lbeq LBA39 ; brif NULL string - return 0
2954 ldu CHARAD ; get input pointer so we can replace it later
2955 stx CHARAD ; point interpreter at string data
2956 abx ; calculate end address of the string
2957 lda ,x ; get byte after the end of the string
2958 pshs u,x,a ; save end of string address, input pointer, and character after end of string
2959 clr ,x ; put a NUL after the string (stops the number interpreter)
2960 jsr GETCCH ; get input character at start of string
2961 jsr LBD12 ; evaluate numeric expression in string
2962 puls a,x,u ; get back saved character and pointers
2963 sta ,x ; restore byte after string
2964 stu CHARAD ; restore interpeter's input pointer
2965 rts
2966 ; Evaluate unsigned expression to BINVAL, then evaluate an unsigned expression to B
2967 LB734 bsr LB73D ; evaluate expression
2968 stx BINVAL ; save result
2969 LB738 jsr LB26D ; make sure there's a comma
2970 bra LB70B ; evaluate unsigned expression to B
2971 ; Evaluate unsigned expression in X
2972 LB73D jsr LB141 ; evaluate numeric expression
2973 LB740 lda FP0SGN ; is it negative?
2974 bmi LB706 ; brif so
2975 lda FP0EXP ; get exponent
2976 cmpa #0x90 ; largest possible exponent for 16 bits
2977 bhi LB706 ; brif too large
2978 jsr LBCC8 ; move binary point to right of FPA0
2979 ldx FPA0+2 ; get resulting unsigned value
2980 rts
2981 ; PEEK function
2982 PEEK bsr LB740 ; get address to X
2983 ldb ,x ; get the value at that address
2984 jmp LB4F3 ; return B as unsigned value
2985 ; POKE function
2986 POKE bsr LB734 ; evaluate address and byte value
2987 ldx BINVAL ; get address
2988 stb ,x ; put value there
2989 rts
2990 ; LLIST command
2991 LLIST ldb #-2 ; set output device to printer
2992 stb DEVNUM
2993 jsr GETCCH ; reset flags for input character and fall through to LIST
2994 ; LIST command
2995 LIST pshs cc ; save zero flag (end of statement)
2996 jsr LAF67 ; parse line number
2997 jsr LAD01 ; find address of that line
2998 stx LSTTXT ; save that address as the start of the list
2999 puls cc ; get back ent of statement flag
3000 beq LB784 ; brif end of line - list whole program
3001 jsr GETCCH ; are we at the end of the line (one number)?
3002 beq LB789 ; brif end of line
3003 cmpa #0xac ; is it "-"?
3004 bne LB783 ; brif not
3005 jsr GETNCH ; eat the "-"
3006 beq LB784 ; brif no second number - list to end of program
3007 jsr LAF67 ; evaluate the second number
3008 beq LB789 ; brif illegal number
3009 LB783 rts
3010 LB784 ldu #0xffff ; this will cause listing to do the entire program
3011 stu BINVAL
3012 LB789 leas 2,s ; don't return to the caller - we'll jump back to the main loop
3013 ldx LSTTXT ; get address of line to list
3014 LB78D jsr LB95C ; do a newline if needed
3015 jsr LA549 ; do a break check
3016 ldd ,x ; get address of next line
3017 bne LB79F ; brif not end of program
3018 LB797 jsr LA42D ; close output file
3019 clr DEVNUM ; reset device to screen
3020 jmp LAC73 ; go back to immediate mode
3021 LB79F stx LSTTXT ; save new line address
3022 ldd 2,x ; get line number of this line
3023 cmpd BINVAL ; is it above the end line?
3024 bhi LB797 ; brif so - return
3025 jsr LBDCC ; display line number
3026 jsr LB9AC ; put a space after it
3027 ldx LSTTXT ; get line address
3028 bsr LB7C2 ; detokenize the line
3029 ldx [LSTTXT] ; get pointer to next line
3030 ldu #LINBUF+1 ; point to start of detokenized line
3031 LB7B9 lda ,u+ ; get byte from detokenized line
3032 beq LB78D ; brif end of line
3033 jsr LB9B1 ; output character
3034 bra LB7B9 ; handle next character
3035 ; Detokenize a line from (X) to the line input buffer
3036 LB7C2 jsr RVEC24 ; do the RAM hook dance
3037 leax 4,x ; move past next line pointer and line number
3038 ldy #LINBUF+1 ; point to line input buffer (destination)
3039 LB7CB lda ,x+ ; get character from tokenized line
3040 beq LB820 ; brif end of input
3041 bmi LB7E6 ; brif it's a token
3042 cmpa #': ; colon?
3043 bne LB7E2 ; brif not
3044 ldb ,x ; get what's after the colon
3045 cmpb #0x84 ; ELSE?
3046 beq LB7CB ; brif so - suppress the colon
3047 cmpb #0x83 ; '?
3048 beq LB7CB ; brif so - suppress the colon
3049 skip2
3050 LB7E0 lda #'! ; placeholder for unknown token
3051 LB7E2 bsr LB814 ; stow output character
3052 bra LB7CB ; go process another input character
3053 LB7E6 ldu #COMVEC-10 ; point to command interptation table
3054 cmpa #0xff ; is it a function?
3055 bne LB7F1 ; brif not
3056 lda ,x+ ; get function token
3057 leau 5,u ; shift to the function half of the interpretation tables
3058 LB7F1 anda #0x7f ; remove token bias
3059 LB7F3 leau 10,u ; move to next command/function table
3060 tst ,u ; is this table active?
3061 beq LB7E0 ; brif not - use place holder
3062 suba ,u ; subtract number of tokens handled by this table entry
3063 bpl LB7F3 ; brif this token isn't handled here
3064 adda ,u ; undo extra subtraction
3065 ldu 1,u ; get reserved word list for this table
3066 LB801 deca ; are we at the right entry?
3067 bmi LB80A ; brif so
3068 LB804 tst ,u+ ; end of entry?
3069 bpl LB804 ; brif not
3070 bra LB801 ; see if we're there yet
3071 LB80A lda ,u ; get character from wordlist
3072 bsr LB814 ; put character in the buffer
3073 tst ,u+ ; end of word?
3074 bpl LB80A ; brif not
3075 bra LB7CB ; go handle another input character
3076 LB814 cmpy #LINBUF+LBUFMX ; is there room?
3077 bhs LB820 ; brif not
3078 anda #0x7f ; lose bit 7
3079 sta ,y+ ; save character in output
3080 clr ,y ; make sure there's always a NUL terminator
3081 LB820 rts
3082 ; Tokenize the line that the input pointer is pointing to; put result in the line input buffer; return
3083 ; length in D
3084 LB821 jsr RVEC23 ; do the RAM hook dance
3085 ldx CHARAD ; get input pointer
3086 ldu #LINBUF ; set destination pointer
3087 LB829 clr V43 ; clear alpha string flag
3088 clr V44 ; clear DATA flag
3089 LB82D lda ,x+ ; get input character
3090 beq LB852 ; brif end of input
3091 tst V43 ; are we handling an alphanumeric string?
3092 beq LB844 ; brif not
3093 jsr LB3A2 ; set carry if not alpha
3094 bcc LB852 ; brif alpha
3095 cmpa #'0 ; is it below the digits?
3096 blo LB842 ; brif so
3097 cmpa #'9 ; is it within the digits?
3098 bls LB852 ; brif so
3099 LB842 clr V43 ; flag that we're past the alphanumeric string
3100 LB844 cmpa #0x20 ; space?
3101 beq LB852 ; brif so - keep it
3102 sta V42 ; save scan delimiter
3103 cmpa #'" ; string delimiter?
3104 beq LB886 ; brif so - copy until another "
3105 tst V44 ; doing "DATA"?
3106 beq LB86B ; brif not
3107 LB852 sta ,u+ ; put character in output
3108 beq LB85C ; brif end of input
3109 cmpa #': ; colon?
3110 beq LB829 ; brif so - reset DATA and alpha string flags
3111 LB85A bra LB82D ; go process another input character
3112 LB85C clr ,u+ ; put a double NUL at the end
3113 clr ,u+
3114 tfr u,d ; calculate length of result (includes double NUL and an extra two bytes)
3115 subd #LINHDR
3116 ldx #LINBUF-1 ; point to one before the output
3117 stx CHARAD ; set input pointer there
3118 rts
3119 LB86B cmpa #'? ; print abbreviation?
3120 bne LB873 ; brif not
3121 lda #0x87 ; token for PRINT
3122 bra LB852 ; go stash it
3123 LB873 cmpa #'' ; REM abbreviation?
3124 bne LB88A ; brif not
3125 ldd #0x3a83 ; colon plus ' token
3126 std ,u++ ; put it in the output
3127 LB87C clr V42 ; set delimiter to NUL
3128 LB87E lda ,x+ ; get input
3129 beq LB852 ; brif end of line
3130 cmpa V42 ; at the delimiter?
3131 beq LB852 ; brif so
3132 LB886 sta ,u+ ; save in output
3133 bra LB87E ; keep scanning for delimiter
3134 LB88A cmpa #'0 ; is it below digits?
3135 blo LB892 ; brif so
3136 cmpa #';+1 ; is it digit, colon, or semicolon?
3137 blo LB852 ; brif so
3138 LB892 leax -1,x ; move input pointer back one (to point at this input character)
3139 pshs u,x ; save input and output pointers
3140 clr V41 ; set token type to 0 (command)
3141 ldu #COMVEC-10 ; point to command interpretation table
3142 LB89B clr V42 ; set token counter to 0 (0x80)
3143 LB89D leau 10,u ;
3144 lda ,u ; get number of reserved words
3145 beq LB8D4 ; brif this table isn't active
3146 ldy 1,u ; point to reserved words list
3147 LB8A6 ldx ,s ; get input pointer
3148 LB8A8 ldb ,y+ ; get character from reserved word table
3149 subb ,x+ ; compare with input character
3150 beq LB8A8 ; brif exact match
3151 cmpb #0x80 ; brif it was the last character in word and exact match
3152 bne LB8EA ; brif not
3153 leas 2,s ; remove original input pointer from stack
3154 puls u ; get back output pointer
3155 orb V42 ; create token value (B has 0x80 from above)
3156 lda V41 ; get token type
3157 bne LB8C2 ; brif function
3158 cmpb #0x84 ; is it ELSE?
3159 bne LB8C6 ; brif not
3160 lda #': ; silently add a colon before ELSE
3161 LB8C2 std ,u++ ; put two byte token into output
3162 bra LB85A ; go handle more input
3163 LB8C6 stb ,u+ ; save single byte token
3164 cmpb #0x86 ; DATA?
3165 bne LB8CE ; brif not
3166 inc V44 ; set DATA flag
3167 LB8CE cmpb #0x82 ; REM?
3168 beq LB87C ; brif so - skip over rest of line
3169 LB8D2 bra LB85A ; go handle more input
3170 LB8D4 ldu #COMVEC-5 ; point to interpretation table, function style
3171 LB8D7 com V41 ; invert token flag
3172 bne LB89B ; brif we haven't already done functions
3173 puls x,u ; restore input and output pointers
3174 lda ,x+ ; copy first character
3175 sta ,u+
3176 jsr LB3A2 ; set C if not alpha
3177 bcs LB8D2 ; brif not alpha - it isn't a variable
3178 com V43 ; set alphanumeric string flag
3179 bra LB8D2 ; process more input
3180 LB8EA inc V42 ; bump token number
3181 deca ; checked all in this table?
3182 beq LB89D ; brif so
3183 leay -1,y ; unconsume last compared character
3184 LB8F1 ldb ,y+ ; end of entry?
3185 bpl LB8F1 ; brif not
3186 bra LB8A6 ; check next reserved word
3187 ; PRINT command
3188 PRINT beq LB958 ; brif no argument - do a newline
3189 bsr LB8FE ; process print options
3190 clr DEVNUM ; reset output to screen
3191 rts
3192 LB8FE cmpa #'@ ; is it PRINT @?
3193 bne LB907 ; brif not
3194 jsr LA554 ; move cursor to correct location
3195 bra LB911 ; handle some more
3196 LB907 cmpa #'# ; device number specified?
3197 bne LB918 ; brif not
3198 jsr LA5A5 ; parse device number
3199 jsr LA406 ; check for valid output file
3200 LB911 jsr GETCCH ; get input character
3201 beq LB958 ; brif nothing - do newline
3202 jsr LB26D ; need comma after @ or #
3203 LB918 jsr RVEC9 ; do the RAM hook boogaloo
3204 LB91B beq LB965 ; brif end of input
3205 LB91D cmpa #0xa4 ; TAB(?
3206 beq LB97E ; brif so
3207 cmpa #', ; comma (next tab field)?
3208 beq LB966 ; brif so
3209 cmpa #'; ; semicolon (do not advance print position)
3210 beq LB997 ; brif so
3211 jsr LB156 ; evaluate expression
3212 lda VALTYP ; get type of value
3213 pshs a ; save it
3214 bne LB938 ; brif string
3215 jsr LBDD9 ; convert FP number to string
3216 jsr LB516 ; parse a string and put on string stack
3217 LB938 bsr LB99F ; print string
3218 puls b ; get back variable type
3219 jsr LA35F ; set up print parameters
3220 tst PRTDEV ; is it a display device?
3221 beq LB949 ; brif so
3222 bsr LB958 ; do a newline
3223 jsr GETCCH ; get input
3224 bra LB91B ; process more print stuff
3225 LB949 tstb ; set flags on print position
3226 bne LB954 ; brif not at start of line
3227 jsr GETCCH ; get current input
3228 cmpa #', ; comma?
3229 beq LB966 ; skip to next tab field if so
3230 bsr LB9AC ; send a space
3231 LB954 jsr GETCCH ; get input character
3232 bne LB91D ; brif not end of statement
3233 LB958 lda #0x0d ; carriage return
3234 bra LB9B1 ; send it to output
3235 LB95C jsr LA35F ; set up print parameters
3236 LB95F beq LB958 ; brif width is 0
3237 lda DEVPOS ; get line position
3238 bne LB958 ; brif not at start of line
3239 LB965 rts
3240 LB966 jsr LA35F ; set up print parameters
3241 beq LB975 ; brif line width is 0
3242 ldb DEVPOS ; get line position
3243 cmpb DEVLCF ; at or past last comma field?
3244 blo LB977 ; brif so
3245 bsr LB958 ; move to next line
3246 bra LB997 ; handle more stuff
3247 LB975 ldb DEVPOS ; get line position
3248 LB977 subb DEVCFW ; subtract a comma field width
3249 bhs LB977 ; brif we don't have a remainder yet
3250 negb ; now B is number of of spaces needed
3251 bra LB98E ; go advance
3252 LB97E jsr LB709 ; evaluate TAB distance
3253 cmpa #') ; closing )?
3254 lbne LB277 ; brif not
3255 jsr LA35F ; set up print parameters
3256 subb DEVPOS ; subtract print position from desired position
3257 bls LB997 ; brif we're already past it
3258 LB98E tst PRTDEV ; is it a display device?
3259 bne LB997 ; brif not
3260 LB992 bsr LB9AC ; output a space
3261 decb ; done enough?
3262 bne LB992 ; brif not
3263 LB997 jsr GETNCH ; get input character
3264 jmp LB91B ; process more items
3265 ; cpoy string from (X-1) to output
3266 LB99C jsr LB518 ; parse the string
3267 LB99F jsr LB657 ; get string details
3268 LB9A2 incb ; compensate for decb
3269 LB9A3 decb ; done all of the string?
3270 beq LB965 ; brif so
3271 lda ,x+ ; get character from string
3272 bsr LB9B1 ; send to output
3273 bra LB9A3 ; go do another character
3274 LB9AC lda #0x20 ; space character
3275 skip2
3276 LB9AF lda #'? ; question mark character
3277 LB9B1 jmp PUTCHR ; output character
3278 ; The floating point math package and related functions and operations follow from here
3279 ; to the end of the Color Basic ROM area
3280 LB9B4 ldx #LBEC0 ; point to FP constant 0.5
3281 bra LB9C2 ; add 0.5 to FPA0
3282 LB9B9 jsr LBB2F ; unpack FP data from (X) to FPA1
3283 ; subtraction operator
3284 LB9BC com FP0SGN ; invert sign of FPA0 (subtracting is adding the negative)
3285 com RESSGN ; that also inverts the sign differential
3286 bra LB9C5 ; go add the negative of FPA0 to FPA1
3287 LB9C2 jsr LBB2F ; unpack FP data from (X) to FPA1
3288 ; addition operator
3289 LB9C5 tstb ; check exponent of FPA0
3290 lbeq LBC4A ; copy FPA1 to FPA0 if FPA0 is 0
3291 ldx #FP1EXP ; point X to FPA1 (first operand) as the operand to denormalize
3292 LB9CD tfr a,b ; put exponent of FPA1 into B
3293 tstb ; is FPA1 0?
3294 beq LBA3E ; brif exponent is 0 - no-op; adding 0 to FPA0
3295 subb FP0EXP ; get difference in exponents - number of bits to shift the smaller mantissa
3296 beq LBA3F ; brif exponents are equal - no need to denormalize
3297 blo LB9E2 ; brif FPA0 > FPA1
3298 sta FP0EXP ; replace result exponent with FPA1's (FPA1 is bigger)
3299 lda FP1SGN ; also copy sign over
3300 sta FP0SGN
3301 ldx #FP0EXP ; point to FPA0 (we need to denormalize the smaller number)
3302 negb ; invert the difference - this is the number of bits to shift the mantissa
3303 LB9E2 cmpb #-8 ; do we have to shift by a whole byte?
3304 ble LBA3F ; brif so start by shifting whole bytes to the right
3305 clra ; clear overflow byte
3306 lsr 1,x ; shift high bit of mantissa right (LSR will force a zero into the high bit)
3307 jsr LBABA ; shift remainder of mantissa right -B times
3308 LB9EC ldb RESSGN ; get the sign flag
3309 bpl LB9FB ; brif signs are the same (we add the mantissas then)
3310 com 1,x ; complement the mantissa and extra precision bytes
3311 com 2,x
3312 com 3,x
3313 com 4,x
3314 coma
3315 adca #0 ; add one to A (COM sets C); this may cause a carry to enter the ADD below
3316 LB9FB sta FPSBYT ; save extra precision byte
3317 lda FPA0+3 ; add the main mantissa bytes (and propage carry from above)
3318 adca FPA1+3
3319 sta FPA0+3
3320 lda FPA0+2
3321 adca FPA1+2
3322 sta FPA0+2
3323 lda FPA0+1
3324 adca FPA1+1
3325 sta FPA0+1
3326 lda FPA0
3327 adca FPA1
3328 sta FPA0
3329 tstb ; were signs the same?
3330 bpl LBA5C ; brif so - number may have gotten bigger so normalize if needed
3331 LBA18 bcs LBA1C ; brif we had a carry - result is positive?)
3332 bsr LBA79 ; do a proper negation of FPA0 mantissa
3333 LBA1C clrb ; clear temporary exponent accumulator
3334 LBA1D lda FPA0 ; test high byte of mantissa
3335 bne LBA4F ; brif not 0 - we need to do bit shifting
3336 lda FPA0+1 ; shift left 8 bits
3337 sta FPA0
3338 lda FPA0+2
3339 sta FPA0+1
3340 lda FPA0+3
3341 sta FPA0+2
3342 lda FPSBYT
3343 sta FPA0+3
3344 clr FPSBYT
3345 addb #8 ; account for 8 bits shifted
3346 cmpb #5*8 ; shifted 5 bytes worth?
3347 blt LBA1D ; brif not
3348 LBA39 clra ; zero out exponent and sign - result is 0
3349 LBA3A sta FP0EXP ; set exponent and sign
3350 sta FP0SGN
3351 LBA3E rts
3352 LBA3F bsr LBAAE ; shift FPA0 mantissa to the right
3353 clrb ; clear carry
3354 bra LB9EC ; get on with adding
3355 LBA44 incb ; account for one bit shift
3356 asl FPSBYT ; shift mantissa and extra precision left
3357 rol FPA0+3
3358 rol FPA0+2
3359 rol FPA0+1
3360 rol FPA0
3361 LBA4F bpl LBA44 ; brif we haven't got a 1 in bit 7
3362 lda FP0EXP ; get exponent of result
3363 pshs b ; subtract shift count from exponent
3364 suba ,s+
3365 sta FP0EXP ; save adjusted exponent
3366 bls LBA39 ; brif we underflowed - set result to 0
3367 skip2
3368 LBA5C bcs LBA66 ; brif mantissa overflowed
3369 asl FPSBYT ; get bit 7 of expra precision to C (used for round off)
3370 lda #0 ; set to 0 without affecting C
3371 sta FPSBYT ; clear out extra precision bits
3372 bra LBA72 ; go round off result
3373 LBA66 inc FP0EXP ; bump exponent (for a right shift to bring carry in)
3374 beq LBA92 ; brif we overflowed
3375 ror FPA0 ; shift carry into mantissa, shift right
3376 ror FPA0+1
3377 ror FPA0+2
3378 ror FPA0+3
3379 LBA72 bcc LBA78 ; brif no round-off needed
3380 bsr LBA83 ; add one to mantissa
3381 beq LBA66 ; brif carry - need to shift right again
3382 LBA78 rts
3383 LBA79 com FP0SGN ; invert sign of value
3384 LBA7B com FPA0 ; first do a one's copmlement
3385 com FPA0+1
3386 com FPA0+2
3387 com FPA0+3
3388 LBA83 ldx FPA0+2 ; add one to mantissa (after one's complement gives two's complement)
3389 leax 1,x ; bump low word
3390 stx FPA0+2
3391 bne LBA91 ; brif no carry from low word
3392 ldx FPA0 ; bump high word
3393 leax 1,x
3394 stx FPA0
3395 LBA91 rts
3396 LBA92 ldb #2*5 ; code for overflow
3397 jmp LAC46 ; raise error
3398 LBA97 ldx #FPA2-1 ; point to FPA2
3399 LBA9A lda 4,x ; shift mantissa right by 8 bits
3400 sta FPSBYT
3401 lda 3,x
3402 sta 4,x
3403 lda 2,x
3404 sta 3,x
3405 lda 1,x
3406 sta 2,x
3407 lda FPCARY ; and handle extra precision on the left
3408 sta 1,x
3409 LBAAE addb #8 ; account for 8 bits shifted
3410 ble LBA9A ; brif more shifts needed
3411 lda FPSBYT ; get sub byte (extra precision)
3412 subb #8 ; undo the 8 added above
3413 beq LBAC4 ; brif difference is 0
3414 LBAB8 asr 1,x ; shift mantissa and sub byte one bit (keep mantissa high bit set)
3415 LBABA ror 2,x
3416 ror 3,x
3417 ror 4,x
3418 rora
3419 incb ; account for one shift
3420 bne LBAB8 ; brif not enought shifts yet
3421 LBAC4 rts
3422 LBAC5 fcb 0x81,0x00,0x00,0x00,0x00 ; packed FP 1.0
3423 LBACA bsr LBB2F ; unpack FP value from (X) to FPA1
3424 ; multiplication operator
3425 LBACC beq LBB2E ; brif exponent of FPA0 is 0 (result is 0)
3426 bsr LBB48 ; calculate exponent of product
3427 LBAD0 lda #0 ; zero out mantissa of FPA2
3428 sta FPA2
3429 sta FPA2+1
3430 sta FPA2+2
3431 sta FPA2+3
3432 ldb FPA0+3 ; multiply FPA1 by LSB of FPA0
3433 bsr LBB00
3434 ldb FPSBYT ; save extra precision byte
3435 stb VAE
3436 ldb FPA0+2
3437 bsr LBB00 ; again for next byte of FPA0
3438 ldb FPSBYT
3439 stb VAD
3440 ldb FPA0+1 ; again for next byte of FPA0
3441 bsr LBB00
3442 ldb FPSBYT
3443 stb VAC
3444 ldb FPA0 ; and finally for the high byte
3445 bsr LBB02
3446 ldb FPSBYT
3447 stb VAB
3448 jsr LBC0B ; copy mantissa from FPA2 to FPA0 (result)
3449 jmp LBA1C ; normalize
3450 LBB00 beq LBA97 ; brif multiplier is 0 - just shift, don't multiply
3451 LBB02 coma ; set carry
3452 LBB03 lda FPA2 ; get FPA2 MS byte
3453 rorb ; data bit to carry; will be 0 when all shifts done
3454 beq LBB2E ; brif 8 shifts done
3455 bcc LBB20 ; brif data bit is 0 - no addition
3456 lda FPA2+3 ; add mantissa of FPA1 and FPA2
3457 adda FPA1+3
3458 sta FPA2+3
3459 lda FPA2+2
3460 adca FPA1+2
3461 sta FPA2+2
3462 lda FPA2+1
3463 adca FPA1+1
3464 sta FPA2+1
3465 lda FPA2
3466 adca FPA1
3467 LBB20 rora ; shift carry into FPA2
3468 sta FPA2
3469 ror FPA2+1
3470 ror FPA2+2
3471 ror FPA2+3
3472 ror FPSBYT
3473 clra ; clear carry
3474 bra LBB03
3475 LBB2E rts
3476 ; Unpack FP value from (X) to FPA1
3477 LBB2F ldd 1,x ; copy mantissa (and sign)
3478 sta FP1SGN ; save sign bit
3479 ora #0x80 ; make sure mantissa has bit 7 set
3480 std FPA1
3481 ldb FP1SGN ; get sign
3482 eorb FP0SGN ; set if FPA0 sign differs
3483 stb RESSGN
3484 ldd 3,x ; copy remainder of mantissa
3485 std FPA1+2
3486 lda ,x ; and exponent
3487 sta FP1EXP
3488 ldb FP0EXP ; fetch FPA0 exponent and set flags
3489 rts
3490 ; Calculate eponent for product of FPA0 and FPA1
3491 LBB48 tsta ; is FPA1 zero?
3492 beq LBB61 ; brif so
3493 adda FP0EXP ; add to exponent of FPA0 (this is how scientific notation works)
3494 rora ; set V if we *don't* have an overflow
3495 rola
3496 bvc LBB61 ; brif exponent too larger or small
3497 adda #0x80 ; restore the bias
3498 sta FP0EXP ; set result exponent
3499 beq LBB63 ; brif 0 - clear FPA0
3500 lda RESSGN ; the result sign (negative if signs differ) is the result sign
3501 sta FP0SGN ; so set it as such
3502 rts
3503 LBB5C lda FP0SGN ; get sign of FPA0
3504 coma ; invert sign
3505 bra LBB63 ; zero sign and exponent
3506 LBB61 leas 2,s ; don't go back to caller (mul/div) - return to previous caller
3507 LBB63 lbpl LBA39 ; brif we underflowed - go zero things out
3508 LBB67 jmp LBA92 ; raise overflow error
3509 ; fast multiply by 10 - leave result in FPA0
3510 LBB6A jsr LBC5F ; copy FPA0 to FPA1 (for addition later)
3511 beq LBB7C ; brif exponent is 0 - it's a no-op then
3512 adda #2 ; this gives "times 4"
3513 bcs LBB67 ; raise overflow if required
3514 clr RESSGN ; set result sign to "signs the same"
3515 jsr LB9CD ; add FPA1 to FPA0 "times 5"
3516 inc FP0EXP ; times 10
3517 beq LBB67 ; brif overflow
3518 LBB7C rts
3519 LBB7D fcb 0x84,0x20,0x00,0x00,0x00 ; packed FP constant 10.0
3520 ; Divide by 10
3521 LBB82 jsr LBC5F ; move FPA0 to FPA1
3522 ldx #LBB7D ; point to constant 10
3523 clrb ; zero sign
3524 LBB89 stb RESSGN ; result will be positive or zero
3525 jsr LBC14 ; unpack constant 10 to FPA0
3526 skip2 ; fall through to division (divide FPA1 by 10)
3527 LBB8F bsr LBB2F ; unpack FP number from (X) to FPA1
3528 ; division operator
3529 LBB91 beq LBC06 ; brif FPA0 is 0 - division by zero
3530 neg FP0EXP ; get exponent of reciprocal of the divisor
3531 bsr LBB48 ; calculate exponent of quotient
3532 inc FP0EXP ; bump exponent (due to division algorithm below)
3533 beq LBB67 ; brif overflow
3534 ldx #FPA2 ; point to temporary storage location
3535 ldb #4 ; do 5 bytes
3536 stb TMPLOC ; save counter
3537 ldb #1 ; shift counter and quotient byte
3538 LBBA4 lda FPA0 ; compare mantissa of FPA0 to FPA1, set C if FPA1 less
3539 cmpa FPA1
3540 bne LBBBD
3541 lda FPA0+1
3542 cmpa FPA1+1
3543 bne LBBBD
3544 lda FPA0+2
3545 cmpa FPA1+2
3546 bne LBBBD
3547 lda FPA0+3
3548 cmpa FPA1+3
3549 bne LBBBD
3550 coma ; set C if FPA0 = FPA1 (it "goes")
3551 LBBBD tfr cc,a ; save "it goes" status
3552 rolb ; rotate carry into quotient
3553 bcc LBBCC ; brif carry clear - haven't done 8 shifts yet
3554 stb ,x+ ; save quotient byte
3555 dec TMPLOC ; done enough bytes?
3556 bmi LBBFC ; brif done all 5
3557 beq LBBF8 ; brif last byte
3558 ldb #1 ; reset shift counter and quotient byte
3559 LBBCC tfr a,cc ; get back carry status
3560 bcs LBBDE ; brif it "went"
3561 LBBD0 asl FPA1+3 ; shift mantissa (dividend) left
3562 rol FPA1+2
3563 rol FPA1+1
3564 rol FPA1
3565 bcs LBBBD ; brif carry - it "goes" so we have to bump quotient
3566 bmi LBBA4 ; brif high order bit is set - compare mantissas
3567 bra LBBBD ; otherwise, count a 0 bit and try next bit
3568 LBBDE lda FPA1+3 ; subtract mantissa of FPA0 from mantissa of FPA1
3569 suba FPA0+3
3570 sta FPA1+3
3571 lda FPA1+2
3572 sbca FPA0+2
3573 sta FPA1+2
3574 lda FPA1+1
3575 sbca FPA0+1
3576 sta FPA1+1
3577 lda FPA1
3578 sbca FPA0
3579 sta FPA1
3580 bra LBBD0 ; go check for another go
3581 LBBF8 ldb #0x40 ; only two bits in last byte (for rounding)
3582 bra LBBCC ; go do the last byte
3583 LBBFC rorb ; get low bits to bits 7,6 and C to bit 5
3584 rorb
3585 rorb
3586 stb FPSBYT ; save result extra precision
3587 bsr LBC0B ; move FPA2 mantissa to FPA0 (result)
3588 jmp LBA1C ; go normalize the result
3589 LBC06 ldb #2*10 ; division by zero
3590 jmp LAC46 ; raise error
3591 ; Copy mantissa of FPA2 to FPA0
3592 LBC0B ldx FPA2 ; copy high word
3593 stx FPA0
3594 ldx FPA2+2 ; copy low word
3595 stx FPA0+2
3596 rts
3597 ; unpack FP number at (X) to FPA0
3598 LBC14 pshs a ; save register
3599 ldd 1,x ; get mantissa high word and sign
3600 sta FP0SGN ; set sign
3601 ora #0x80 ; make sure mantissa always has bit 7 set
3602 std FPA0
3603 clr FPSBYT ; clear extra precision
3604 ldb ,x ; get exponent
3605 ldx 3,x ; copy mantissa low word
3606 stx FPA0+2
3607 stb FP0EXP ; save exponent (and set flags)
3608 puls a,pc ; restore register and return
3609 LBC2A ldx #V45 ; point to FPA4
3610 bra LBC35 ; pack FPA0 there
3611 LBC2F ldx #V40 ; point to FPA3
3612 skip2 ; fall through to pack FPA0 there
3613 LBC33 ldx VARDES ; get variable descriptor pointer
3614 ; Pack FPA0 to (X)
3615 LBC35 lda FP0EXP ; get exponent
3616 sta ,x ; save it
3617 lda FP0SGN ; get sign
3618 ora #0x7f ; force set low bits - only keep sign in high bit
3619 anda FPA0 ; merge in bits 6-0 of high byte of mantissa
3620 sta 1,x ; save it
3621 lda FPA0+1 ; copy next highest byte
3622 sta 2,x
3623 ldu FPA0+2 ; and the low word of the mantissa
3624 stu 3,x
3625 rts
3626 ; Copy FPA1 to FPA0; return with sign in A
3627 LBC4A lda FP1SGN ; copy sign
3628 LBC4C sta FP0SGN
3629 ldx FP1EXP ; copy exponent, mantissa high byte
3630 stx FP0EXP
3631 clr FPSBYT ; clear extra precision
3632 lda FPA1+1 ; copy mantissa second highest byte
3633 sta FPA0+1
3634 lda FP0SGN ; set sign for return
3635 ldx FPA1+2 ; copy low word of mantissa
3636 stx FPA0+2
3637 rts
3638 ; Copy FPA0 to FPA1
3639 LBC5F ldd FP0EXP ; copy exponent and high byte of mantissa
3640 std FP1EXP
3641 ldx FPA0+1 ; copy middle bytes of mantissa
3642 stx FPA1+1
3643 ldx FPA0+3 ; copy low byte of mantissa and sign
3644 stx FPA1+3
3645 tsta ; set flags on exponent
3646 rts
3647 ; check FPA0: return B = 0, if FPA0 is 0, 0xff if negative, and 0x01 if positive
3648 LBC6D ldb FP0EXP ; get exponent
3649 beq LBC79 ; brif 0
3650 LBC71 ldb FP0SGN ; get sign
3651 LBC73 rolb ; get sign to C
3652 ldb #0xff ; set for negative result
3653 bcs LBC79 ; brif negative
3654 negb ; set to 1 for positive
3655 LBC79 rts
3656 ; SGN function
3657 SGN bsr LBC6D ; get sign of FPA0
3658 LBC7C stb FPA0 ; save result
3659 clr FPA0+1 ; clear next lower 8 bits
3660 ldb #0x88 ; exponent if mantissa is 8 bit integer
3661 LBC82 lda FPA0 ; get high bits of mantissa
3662 suba #0x80 ; set C if mantissa was positive (will cause a negation if it was negative)
3663 LBC86 stb FP0EXP ; set exponent
3664 ldd ZERO ; clear out low word
3665 std FPA0+2
3666 sta FPSBYT ; clear extra precision
3667 sta FP0SGN ; set sign to positive
3668 jmp LBA18 ; normalize the result
3669 ; ABS function
3670 ABS clr FP0SGN ; force FPA0 to be positive (yes, it's that simple)
3671 rts
3672 ; Compare packed FP number at (X) to FPA0
3673 ; Return with B = -1, 0, 1 for FPA0 <, =, > (X) and flags set based on that
3674 LBC96 ldb ,x ; get exponent of (X)
3675 beq LBC6D ; brif (X) is 0
3676 ldb 1,x ; get MS byte of mantissa of (X)
3677 eorb FP0SGN ; set bit 7 if signs of (X) and FPA0 differ
3678 bmi LBC71 ; brif signs differ - no need to compare the magnitude
3679 LBCA0 ldb FP0EXP ; compare exponents and brif different
3680 cmpb ,x
3681 bne LBCC3
3682 ldb 1,x ; compare mantissa (but we have to pack the FPA0 bits first
3683 orb #0x7f ; keep only sign bit (note: signs are the same)
3684 andb FPA0 ; merge in the mantissa bits from FPA0
3685 cmpb 1,x ; do the packed versions match?
3686 bne LBCC3 ; brif not
3687 ldb FPA0+1 ; compare second byte of mantissas
3688 cmpb 2,x
3689 bne LBCC3
3690 ldb FPA0+2 ; compare third byte of mantissas
3691 cmpb 3,x
3692 bne LBCC3
3693 ldb FPA0+3 ; compare low byte of mantissas, but use subtraction so B = 0 on match
3694 subb 4,x
3695 bne LBCC3
3696 rts ; return B = 0 if (X) = FPA0
3697 LBCC3 rorb ; shift carry to bit 7 (C set if FPA0 < (X))
3698 eorb FP0SGN ; invert the comparision sense if the signs are negative
3699 bra LBC73 ; interpret comparison result
3700 ; Shift mantissa of FPA0 until the binary point is immediately to the right of the mantissa and set up the
3701 ; result as a two's complement value.
3702 LBCC8 ldb FP0EXP ; get exponent of FPA0
3703 beq LBD09 ; brif FPA0 is zero - we don't have to do anything, just blank it
3704 subb #0xa0 ; calculate number of shifts to get to the correct exponent (binary point to the right)
3705 lda FP0SGN ; do we have a positive number?
3706 bpl LBCD7 ; brif so
3707 com FPCARY ; negate the mantissa and set extra inbound precision to the correct sign
3708 jsr LBA7B
3709 LBCD7 ldx #FP0EXP ; point to FPA0
3710 cmpb #-8 ; moving by whole bytes?
3711 bgt LBCE4 ; brif not
3712 jsr LBAAE ; do bit shifting
3713 clr FPCARY ; clear carry in byte
3714 rts
3715 LBCE4 clr FPCARY ; clear the extra carry in precision
3716 lda FP0SGN ; get sign of value
3717 rola ; get sign to carry (so rotate repeats the sign)
3718 ror FPA0 ; shift the first bit
3719 jmp LBABA ; do the shifting dance
3720 ; INT function
3721 INT ldb FP0EXP ; get exponent
3722 cmpb #0xa0 ; is the number big enough that there can be no fractional part?
3723 bhs LBD11 ; brif so - we don't have to do anything
3724 bsr LBCC8 ; go shift binary point to the right of the mantissa
3725 stb FPSBYT ; save extra precision bits
3726 lda FP0SGN ; get original sign
3727 stb FP0SGN ; force result to be positive
3728 suba #0x80 ; set C if we had a positive result
3729 lda #0xa0 ; set exponent to match denormalized result
3730 sta FP0EXP
3731 lda FPA0+3 ; save low byte
3732 sta CHARAC
3733 jmp LBA18 ; go normalize (this will correct for the two's complement representation of negatives)
3734 LBD09 stb FPA0 ; replace mantissa of FPA0 with contents of B
3735 stb FPA0+1
3736 stb FPA0+2
3737 stb FPA0+3
3738 LBD11 rts
3739 ; Convert ASCII string to FP
3740 ; BUG: no overflow is checked on the decimal exponent in exponential notation.
3741 LBD12 ldx ZERO ; zero out FPA0 and temporaries
3742 stx FP0SGN
3743 stx FP0EXP
3744 stx FPA0+1
3745 stx FPA0+2
3746 stx V47
3747 stx V45
3748 bcs LBD86 ; brif input character is numeric
3749 jsr RVEC19 ; do the RAM hook dance
3750 cmpa #'- ; regular negative sign
3751 bne LBD2D ; brif not
3752 com COEFCT ; invert sign
3753 bra LBD31 ; process stuff after the sign
3754 LBD2D cmpa #'+ ; regular plus?
3755 bne LBD35 ; brif not
3756 LBD31 jsr GETNCH ; get character after sign
3757 bcs LBD86 ; brif numeric
3758 LBD35 cmpa #'. ; decimal point?
3759 beq LBD61 ; brif so
3760 cmpa #'E ; scientific notation
3761 bne LBD65 ; brif not
3762 jsr GETNCH ; eat the "E"
3763 bcs LBDA5 ; brif numeric
3764 cmpa #0xac ; negative sign (token)?
3765 beq LBD53 ; brif so
3766 cmpa #'- ; regular negative?
3767 beq LBD53 ; brif so
3768 cmpa #0xab ; plus sign (token)?
3769 beq LBD55 ; brif so
3770 cmpa #'+ ; regular plus?
3771 beq LBD55
3772 bra LBD59 ; brif no sign found
3773 LBD53 com V48 ; set exponent sign to negative
3774 LBD55 jsr GETNCH ; eat the sign
3775 bcs LBDA5 ; brif numeric
3776 LBD59 tst V48 ; is the exponent sign negatvie?
3777 beq LBD65 ; brif not
3778 neg V47 ; negate base 10 exponent
3779 bra LBD65
3780 LBD61 com V46 ; toggle decimal point flag
3781 bne LBD31 ; brif we haven't seen two decimal points
3782 LBD65 lda V47 ; get base 10 exponent
3783 suba V45 ; subtract number of places to the right
3784 sta V47 ; we now have a complete decimal exponent
3785 beq LBD7F ; brif we have no base 10 shifting required
3786 bpl LBD78 ; brif positive exponent
3787 LBD6F jsr LBB82 ; divide FPA0 by 10 (shift decimal point left)
3788 inc V47 ; bump exponent
3789 bne LBD6F ; brif we haven't reached 0 yet
3790 bra LBD7F ; return result
3791 LBD78 jsr LBB6A ; multiply by 10
3792 dec V47 ; downshift the exponent
3793 bne LBD78 ; brif not at 0 yet
3794 LBD7F lda COEFCT ; get desired sign
3795 bpl LBD11 ; brif it will be positive - no need to do anything
3796 jmp LBEE9 ; flip the sign of FPA0
3797 LBD86 ldb V45 ; get the decimal count
3798 subb V46 ; (if decimal seen, will add one; otherwise it does nothing)
3799 stb V45
3800 pshs a ; save new digit
3801 jsr LBB6A ; multiply partial result by 10
3802 puls b ; get back digit
3803 subb #'0 ; remove ASCII bias
3804 bsr LBD99 ; add B to FPA0
3805 bra LBD31 ; go process another digit
3806 LBD99 jsr LBC2F ; save FPA0 to FPA3
3807 jsr LBC7C ; convert B to FP number
3808 ldx #V40 ; point to FPA3
3809 jmp LB9C2 ; add FPA3 and FPA0
3810 LBDA5 ldb V47 ; get exponent value
3811 aslb ; times 2
3812 aslb ; times 4
3813 addb V47 ; times 5
3814 aslb ; times 10
3815 suba #'0 ; remove ASCII bias
3816 pshs b ; save acculated result
3817 adda ,s+ ; add new digit to accumulated result
3818 sta V47 ; save new accumulated decimal exponent
3819 bra LBD55 ; interpret another exponent character
3820 LBDB6 fcb 0x9b,0x3e,0xbc,0x1f,0xfd ; packed FP: 99999999.9
3821 LBDBB fcb 0x9e,0x6e,0x6b,0x27,0xfd ; packed FP: 999999999
3822 LBDC0 fcb 0x9e,0x6e,0x6b,0x28,0x00 ; pakced FP: 1E9
3823 LBDC5 ldx #LABE8-1 ; point to "IN" message
3824 bsr LBDD6 ; output the string
3825 ldd CURLIN ; get basic line number
3826 LBDCC std FPA0 ; save 16 bit unsigned integer
3827 ldb #0x90 ; exponent for upper 16 bits of FPA0 to be an integer
3828 coma ; set C (force normalization to treat as positive)
3829 jsr LBC86 ; zero bottom half, save exponent, and normalize
3830 bsr LBDD9 ; convert FP number to ASCII string
3831 LBDD6 jmp LB99C ; output string
3832 ; Convert FP number to ASCII string
3833 LBDD9 ldu #STRBUF+3 ; point to buffer address that will not cause string to go to string space
3834 LBDDC lda #0x20 ; default sign is a space character
3835 ldb FP0SGN ; get sign of value
3836 bpl LBDE4 ; brif positive
3837 lda #'- ; use negative sign
3838 LBDE4 sta ,u+ ; save sign
3839 stu COEFPT ; save output buffer pointer
3840 sta FP0SGN ; save sign character
3841 lda #'0 ; result is 0 if exponent is 0
3842 ldb FP0EXP ; get exponent
3843 lbeq LBEB8 ; brif FPA0 is 0
3844 clra ; base 10 exponent is 0 for > 1
3845 cmpb #0x80 ; is number > 1?
3846 bhi LBDFF ; brif so
3847 ldx #LBDC0 ; point to 1E+09
3848 jsr LBACA ; shift decimal to the right by 9 spaces
3849 lda #-9 ; account for shift
3850 LBDFF sta V45 ; save base 10 exponent
3851 LBE01 ldx #LBDBB ; point to 999999999
3852 jsr LBCA0 ; are we above that?
3853 bgt LBE18 ; brif so
3854 LBE09 ldx #LBDB6 ; point to 99999999.9
3855 jsr LBCA0 ; are we above that?
3856 bgt LBE1F ; brif in range
3857 jsr LBB6A ; multiply by 10 (we were small)
3858 dec V45 ; account for shift
3859 bra LBE09 ; see if we've come into range
3860 LBE18 jsr LBB82 ; divide by 10
3861 inc V45 ; account for shift
3862 bra LBE01 ; see if we've come into range
3863 LBE1F jsr LB9B4 ; add 0.5 to FPA0 (rounding)
3864 jsr LBCC8 ; do the integer dance
3865 ldb #1 ; default decimal flag (force immediate decimal)
3866 lda V45 ; get base 10 exponent
3867 adda #10 ; account for "unormalized" number
3868 bmi LBE36 ; brif number < 1.0
3869 cmpa #11 ; do we have more than 9 places?
3870 bhs LBE36 ; brif so - do scientific notation
3871 deca
3872 tfr a,b
3873 lda #2 ; force no scientific notation
3874 LBE36 deca ; subtract wo without affecting carry
3875 deca
3876 sta V47 ; save exponent - 0 is do not display in scientific notation
3877 stb V45 ; save number of places to left of decimal
3878 bgt LBE4B ; brif >= 1
3879 ldu COEFPT ; point to string buffer
3880 lda #'. ; put decimal
3881 sta ,u+
3882 tstb ; is there anything to left of decimal?
3883 beq LBE4B ; brif not
3884 lda #'0 ; store a zero
3885 sta ,u+
3886 LBE4B ldx #LBEC5 ; point to powers of 10
3887 ldb #0x80 ; set digit counter to 0x80
3888 LBE50 lda FPA0+3 ; add mantissa to power of 10
3889 adda 3,x
3890 sta FPA0+3
3891 lda FPA0+2
3892 adca 2,x
3893 sta FPA0+2
3894 lda FPA0+1
3895 adca 1,x
3896 sta FPA0+1
3897 lda FPA0
3898 adca ,x
3899 sta FPA0
3900 incb ; add one to digit counter
3901 rorb ; put carry into bit 7
3902 rolb ; set V if carry and sign differ
3903 bvc LBE50 ; brif positive mantissa or carry is 0 and negative mantissa
3904 bcc LBE72 ; brif negative mantissa
3905 subb #10+1 ; take 9's complement if adding mantissa
3906 negb
3907 LBE72 addb #'0-1 ; add ASCII bias
3908 leax 4,x ; move to next power of 10
3909 tfr b,a ; save digit
3910 anda #0x7f ; remove add/subtract flag
3911 sta ,u+ ; put in output
3912 dec V45 ; do we need a decimal yet?
3913 bne LBE84 ; brif not
3914 lda #'. ; put decimal
3915 sta ,u+
3916 LBE84 comb ; toggle bit 7 (add/sub flag)
3917 andb #0x80 ; only keep bit 7
3918 cmpx #LBEC5+9*4 ; done all places?
3919 bne LBE50 ; brif not
3920 LBE8C lda ,-u ; get last character
3921 cmpa #'0 ; was it 0?
3922 beq LBE8C ; brif so
3923 cmpa #'. ; decimal?
3924 bne LBE98 ; brif not
3925 leau -1,u ; move past decimal if it isn't needed
3926 LBE98 lda #'+ ; plus sign
3927 ldb V47 ; get scientific notation exponent
3928 beq LBEBA ; brif not scientific notation
3929 bpl LBEA3 ; brif positive exponent
3930 lda #'- ; negative sign for base 10 exponent
3931 negb ; switch to positive exponent
3932 LBEA3 sta 2,u ; put sign
3933 lda #'E ; put "E"
3934 sta 1,u
3935 lda #'0-1 ; init to ASCII 0 (compensate for INC)
3936 LBEAB inca ; bump digit
3937 subb #10 ; have we hit the correct one yet?
3938 bcc LBEAB ; brif not
3939 addb #'9+1 ; convert units digit to ASCII
3940 std 3,u ; put exponent in output
3941 clr 5,u ; put trailing NUL
3942 bra LBEBC ; go reset pointer
3943 LBEB8 sta ,u ; store last character
3944 LBEBA clr 1,u ; put NUL at the end
3945 LBEBC ldx #STRBUF+3 ; point to start of string
3946 rts
3947 LBEC0 fcb 0x80,0x00,0x00,0x00,0x00 ; packed FP 0.5
3948 LBEC5 fqb -100000000
3949 fqb 10000000
3950 fqb -1000000
3951 fqb 100000
3952 fqb -10000
3953 fqb 1000
3954 fqb -100
3955 fqb 10
3956 fqb -1
3957 LBEE9 lda FP0EXP ; get exponent of FPA0
3958 beq LBEEF ; brif 0 - don't flip sign
3959 com FP0SGN ; flip sign
3960 LBEEF rts
3961 ; Expand a polynomial of the form
3962 ; AQ+BQ^3+CQ^5+DQ^7..... where Q is FPA0 and X points to a table
3963 LBEF0 stx COEFPT ; save coefficient table pointer
3964 jsr LBC2F ; copy FPA0 to FPA3
3965 bsr LBEFC ; multiply FPA3 by FPA0
3966 bsr LBF01 ; expand polynomial
3967 ldx #V40 ; point to FPA3
3968 LBEFC jmp LBACA ; multiply FPA0 by FPA3
3969 LBEFF stx COEFPT ; save coefficient table counter
3970 LBF01 jsr LBC2A ; move FPA0 to FPA4
3971 ldx COEFPT ; get the current coefficient
3972 ldb ,x+ ; get the number of entries
3973 stb COEFCT ; save as counter
3974 stx COEFPT ; save new pointer
3975 LBF0C bsr LBEFC ; multiply (X) and FPA0
3976 ldx COEFPT ; get this coefficient
3977 leax 5,x ; move to next one
3978 stx COEFPT ; save new pointer
3979 jsr LB9C2 ; add (X) to FPA0
3980 ldx #V45 ; point X to FPA4
3981 dec COEFCT ; done all coefficients?
3982 bne LBF0C ; brif more left
3983 rts
3984 ; RND function
3985 RND jsr LBC6D ; set flags on FPA0
3986 bmi LBF45 ; brif negative - set seed
3987 beq LBF3B ; brif 0 - do random between 0 and 1
3988 bsr LBF38 ; convert to integer
3989 jsr LBC2F ; save range value
3990 bsr LBF3B ; get random number
3991 ldx #V40 ; point to FPA3
3992 bsr LBEFC ; multply (X) by FPA0
3993 ldx #LBAC5 ; point to FP 1.0
3994 jsr LB9C2 ; add 1 to FPA0
3995 LBF38 jmp INT ; return integer value
3996 LBF3B ldx RVSEED+1 ; move variable random number seed to FPA0
3997 stx FPA0
3998 ldx RVSEED+3
3999 stx FPA0+2
4000 LBF45 ldx RSEED ; move fixed seed to FPA1
4001 stx FPA1
4002 ldx RSEED+2
4003 stx FPA1+2
4004 jsr LBAD0 ; multiply them
4005 ldd VAD ; get lowest order product bytes
4006 addd #0x658b ; add a constant
4007 std RVSEED+3 ; save it as new seed
4008 std FPA0+2 ; save in result
4009 ldd VAB ; get high order extra product bytes
4010 adcb #0xb0 ; add upper bytes of constant
4011 adca #5
4012 std RVSEED+1 ; save as new seed
4013 std FPA0 ; save as result
4014 clr FP0SGN ; set result to positive
4015 lda #0x80 ; set exponent to 0 < FPA0 < 1
4016 sta FP0EXP
4017 lda FPA2+2 ; get a byte from FPA2
4018 sta FPSBYT ; save as extra precision
4019 jmp LBA1C ; go normalize FPA0
4020 RSEED fqb 0x40e64dab ; constant random number generator seed
4021 ; SIN function
4022 SIN jsr LBC5F ; copy FPA0 to FPA1
4023 ldx #LBFBD ; point to 2*pi
4024 ldb FP1SGN ; get sign of FPA1
4025 jsr LBB89 ; divide FPA0 by 2*pi
4026 jsr LBC5F ; copy FPA0 to FPA1
4027 bsr LBF38 ; convert FPA0 to an integer
4028 clr RESSGN ; set result to positive
4029 lda FP1EXP ; get exponent of FPA1
4030 ldb FP0EXP ; get exponent of FPA0
4031 jsr LB9BC ; subtract FPA0 from FPA1
4032 ldx #LBFC2 ; point to FP 0.25
4033 jsr LB9B9 ; subtract FPA0 from 0.25 (pi/2)
4034 lda FP0SGN ; get result sign
4035 pshs a ; save it
4036 bpl LBFA6 ; brif positive
4037 jsr LB9B4 ; add 0.5 (pi) to FPA0
4038 lda FP0SGN ; get sign of result
4039 bmi LBFA9 ; brif negative
4040 com RELFLG ; if 3pi/2 >= arg >= pi/2
4041 LBFA6 jsr LBEE9 ; flip sign of FPA0
4042 LBFA9 ldx #LBFC2 ; point to 0.25
4043 jsr LB9C2 ; add 0.25 (pi/2) to FPA0
4044 puls a ; get original sign
4045 tsta ; was it positive
4046 bpl LBFB7 ; brif so
4047 jsr LBEE9 ; flip result sign
4048 LBFB7 ldx #LBFC7 ; point to series coefficients
4049 jmp LBEF0 ; go calculate value
4050 LBFBD fcb 0x83,0x49,0x0f,0xda,0xa2 ; 2*pi
4051 LBFC2 fcb 0x7f,0x00,0x00,0x00,0x00 ; 0.25
4052 ; modified taylor series SIN coefficients
4053 LBFC7 fcb 6-1 ; six coefficients
4054 fcb 0x84,0xe6,0x1a,0x2d,0x1b ; -((2pi)^11)/11!
4055 fcb 0x86,0x28,0x07,0xfb,0xf8 ; ((2pi)^9)/9!
4056 fcb 0x87,0x99,0x68,0x89,0x01 ; -((2pi)^7)/7!
4057 fcb 0x87,0x23,0x35,0xdf,0xe1 ; ((2pi)^5)/5!
4058 fcb 0x86,0xa5,0x5d,0xe7,0x28 ; -(2pi)^3)/3!
4059 fcb 0x83,0x49,0x0f,0xda,0xa2 ; 2*pi
4060 ; these 12 bytes are unused
4061 fcb 0xa1,0x54,0x46,0x8f,0x13,0x8f,0x52,0x43
4062 fcb 0x89,0xcd,0xa6,0x81
4063 ; these are the hardware interrupt vectors (coco1/2 only)
4064 fdb SW3VEC
4065 fdb SW2VEC
4066 fdb FRQVEC
4067 fdb IRQVEC
4068 fdb SWIVEC
4069 fdb NMIVEC
4070 fdb RESVEC